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Abstract. We present a new approach to Hermite subdivision schemes.
It is based on the observation that a sequence of second order Hermite data

define a unique interpolating cubic C ! spline. The B-Spline form of this
interpolating spline leads to a stationary nonuniform subdivision scheme
with 4 different subdivision rules for the control points. We construct a

generalized 4-point scheme which leads to a new family of C? Hermite
subdivision schemes.

§1. Introduction

Starting from an initial sequence {hz(o)}iez of second order Hermite elements
(i.e. vectors containing function values and associated first derivatives), a Her-
mite subdivision scheme (cf. [4,5,6,7]) of order two recursively generates finer

sequences {hgk)}iez of Hermite elements associated with the dyadic points
{tz(k) =i27%};cz. The refinement is based on two rules,

k+1 k k k+1 k k
RIHD = SO ABRE ) SR 00— 12, (1)
7=0 Jj=0

where the matrix masks A®*) = {A(()k), .. .,Agf)}, B) = {B(()k), .. .,B,(,’f)} of
the scheme consist of real 2 x 2 matrices Ag.k), BJ(.k) depending on the subdivi-
sion level k. Merrien [7] considered Hermite-type 2—point—schemes (i.e. with
m = 1), generating C! functions. By introducing an auxiliary point subdivi-
sion scheme, Dyn and Levin [4,5] analyzed stationary Hermite—interpolatory
subdivision schemes of arbitrary order. Using this approach, Kuijt [6] con-
structed several C? Hermite interpolatory subdivision schemes of order two.
Kuijt derived the refinement rules by considering the polynomials interpolat-
ing neighboring Hermite elements, and sampling Hermite data from them.
By considering the interpolating splines associated with the Hermite ele-
ments, this paper introduces a new approach to Hermite subdivision. We ana-
lyze the smoothness of the limit function, and present a family of C? Hermite
subdivision schemes generalizing the 4-point scheme [3]. This spline-based
approach can be generalized to Hermite elements of arbitrary order.
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§2. Spline Subdivision Schemes

At each subdivision level k, the Hermite data {hgk)}iez define a unique in-
terpolating cubic C?! spline, having the B-spline representation

X (1) Z PN, 4(t) with knots T®) =(...,+F) 1) 48 48 -~ (9
\—\f—/ —

2% 2 X

(k)

The control points p;”’ € IR are associated with the Greville-abscissas (see

e.g. [8]) gf) = tl(k) — 5% and 552_1 = tgk) + 5%, forming a nonuniform

sequence. Control points and Hermite elements are related by the transfor-
. k) (k k k k) (k
mations (pgz),pgzll)T H(k)h( ) and h( ) = = (H®)~ (pgz),pgzll)T, where

1

H — (i —:f) . (H®) = (_3 2k-1 32%_1) SN C)

32k
Clearly, the spline function X *) can be represented with respect to the refined
knot vector T(®*+1), Knot insertion leads to the following 4 refinement rules
for the B-Spline control points:

~(k+1) _ 3 (k)_|_ 1, (k) ~(k+1) _ (k)+ 5, (k) 42 (k)

yon = 4P2; 1P2i415  Pairo” = 8p2z 8p27,—+-1 8P2;1 0, (4)
(k41 (k) (k) (k+1 k k k
pz(u+1) 4p27, + 4p2z+1’ pé(li+3) = gzl—l + Spgz—)f-2 + s gz—)+-3

The affine combinations (4) describe a stationary nonuniform (due to the non-
uniform Greville abscissas) subdivision scheme for the B-Spline control points.
This scheme generalizes the splitting step of a binary uniform subdivision
scheme. The sequence of control polygons converges to the C! limit function
X (©). Generalizing (4) leads to the notion of a spline subdivision scheme:

Definition 1. A spline subdivision scheme S(a° al,a? a3) with the coeffi-

cient masks a" = (al,...,a}, 1), generating a sequence of cubic C* spline
functions X *)(t), is given by the four subdivision rules
2m+1
k+1 k
piity) = Zahpgz)ﬂ, h=0,1,2,3, k=01,2,.... (5)

With the help of the transformations (3), the matrix masks of Hermite sub-
division schemes (1) can be transformed into the coefficient masks of spline
subdivision scheme (5), thus motivating the following definition.

Definition 2. A Hermite scheme is said to be stationary if the matrices A; :=
Hk+1) Ag.k) (H®) ™ Bj := Hk+Y) BJ(.k) (H®) ™", are constant for all k (j =
0,...,m). The coefficients a”* of the associated spline subdivision scheme are

obtained from
al. af. a2, a2
Aj — %J %J-l—l ’ Bj — %J 2J+1
Az; Q2541 Qs a’2_7—|—1
Consequently, every stationary Hermite subdivision scheme S(A®*) B®*)) is
equivalent to a spline subdivision scheme S (ao, al, a2 a3).

Note that a spline subdivision scheme can also be seen as a special matrix
subdivision scheme (see [1]) acting on vectors of 2 consecutive control points.
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§3. Convergence Analysis

In the sequel we generalize the approach introduced by Dyn, Gregory and
Levin [2] to the spline subdivision case. Consider a spline subdivision scheme
S(a’ al,a? a?) on the finite domain [0,n] € IR. The scheme is well-defined
on this domain, for all £ > 0, if the associated Hermite elements at stage k

are defined on the set {tz(k)|i € Zx}, where

Zr=40,1,...,2"0 4+ nq }, nl_{2m—2 i A =0

The spline function (2) has the knots

701, 9, 6,19,

1 t(k) ,t(k) ,t(k) )

2kn+4nq? "2kn+ny? "2kn4+ni+1

and the control points (p,gk))i:(),“.g(an_l_nl)+1.

Consider an interval Ii(k) = [tgk),tglj_)l] at the k-th subdivision step. The
control points which govern the future behavior of the process in this interval
are gathered in the vector p; ; = (pgf), e ’p§2+n1+1)+1)T'

The control point vectors pa; k41, P2i+1,k+1 at the subdivision level k+1,
associated with the subintervals 12(2““) and Iéf:ll ), are obtained from Pi,k by

two linear transformations,
P2ik+1 = GoPix and Poiyi k1 = G1Pik (6)
. (1. M=2 (3 M i1eip) .
with C_TYO = G a_,) and G1 = G(7747_,), where G(Jig’;) is the matrix
comprised of the elements of G, at rows 41 <---< 4, and columns j; <---< jp.
These linear transformations are expressed as submatrices of the M x M

generator matriz G, where M = 2(ny + 3). If A, # 0, then M = 4(m + 1)
and we get the generator matrix

(AO . 1y 0 0\
By -+ «+- Bp 0 -+ - 0
0 Ao - Ay 0 - 0

G = 0 By - - Bp 0 - 0] (7)
0o - 0 Ay -+ -+ A, O
\0 0 By --- --- Bpn 0/

Otherwise, if A, =0, M = 4m + 2 and the generator matrix is as above but
with the last two rows and columns deleted.

3.1. Continuity

The following necessary condition is analogous to [2, Prop. 2.3]. Alternatively
it can be formulated using the eigenstructure of the masks of the associated
matrix subdivision scheme, cf. [1].
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Proposition 3 (Affine invariance). A necessary condition for the uniform
convergence of the spline subdivision process to a continuous nonzero limit
function on [0,n|, for arbitrary initial data, is that ngg‘ ! al =1 for all
h=0,1,2,3.

In order to analyze the convergence to a continuous limit function, we exam-
ine the difference scheme AS(a’, a' a% a3) generating the differences Agk) =

pgi)l — pgk). If the necessary condition of Proposition 3 is satisfied, then this

process can again be described with the help of another generator matrix

C:EMG(EM)_1<1“'M_1>

1...M -1 (®)

which is obtained using the upper triangular matrices Epr = (—09; ; + 0i41.5)
and (Ey) ' = (- hM=_01 dith,j), cf. [2, Prop. 3.2]. The M—3 differences
governing the future behavior of the process in the interval Ii(k) are again

collected in a vector A, = [Agf), e, Ag’ngran)]T. The analogues of the
transformation (6) are
Agikt1 = CoA;r and Agitq 1 = Cr1lAik 9)

where Cy = C(}::%:g) and C; = C(‘;’:::%:;). Note that the row and column
ranges of the sub—matrices Cyp, C; are different from those in [2], as we analyze

a difference process with 4 (rather than 2) rules. We get (cf. [2, Theorem 3.1))

Theorem 4. Let the spline subdivision process satisfy the necessary conver-
gence condition of Proposition 3. Then the following are equivalent:
(i) The spline subdivision process S(a’, al, a? a3) converges uniformly to a

continuous limit function on [0, n] for arbitrary initial data.

(i1) The difference process AS(a°,al,a% a3) is contracting, i.e. it converges
uniformly to zero on [0, n] for arbitrary initial data.

(791) There exists an integer L > 0 and a real number 0 < « < 1 such that
||C’Z1 CzL”oo < aq, V’L] € {0,1} and j=1,...,L.

In the sequel we have to analyze other point processes with four different
refinement rules. The continuity of the limit function can then be analyzed in
an analogous way, where the generator matrix is obtained as in (8).

3.2. Derivative process

In order to investigate the differentiability of the limit function f, we analyze
the first derivative of the cubic C* splines (2). Clearly, we obtain a sequence of
quadratic C° splines with knots T) | see Figure 1. If the necessary condition
of Prop. 3 is satisfied, then the quadratic splines are generated by another
spline subdivision scheme, again with four different rules for the control points.
This scheme will be called the derivative scheme 95 (a° al, a2, a3).
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Fig. 1. Derivative scheme and inscribed polygon process.

Proposition 5. If the derivative process 0S(a’ a',a% a3) converges uni-
formly to d € C[0,n], then the spline subdivision scheme S(a', al, a2, a3)

converges uniformly to f € C'[0,n], and f’ = d.

Using similar techniques as in Section 3.1, we define control point vectors and
a generator matrix D. We omit the details, giving only the main result:

Proposition 6. The derivative scheme 05(a’ a',a% a®) has the (M — 1) x
(M — 1) generator matrix

(1. M-1
D =2E, G (EL) 1<1 M_1>

with E}; = diag(1,2,1,...,2) Ea and (E};)~' = (Ep) ™ diag(1,1,1,..., ).

The continuity of the limit function generated by the derivative scheme
can now easily be analyzed as in Section 3.1 by discussing the associated
difference scheme AQS(a, al, a2, a®). This leads to criteria for C! continuity

of Hermite subdivision schemes.

3.3. C* convergence analysis via inscribed polygons

In order to examine higher order continuity, we inscribe a polygon into the
quadratic C° spline and analyze the resulting subdivision scheme, called the
inscribed polygon process POS(a’ al,a? a%). More precisely, at the subdi-
vision level k, we consider the piecewise linear function with the vertices
(tl(kJrl),X(k) (tgkﬂ)) ), see Figure 1.

Proposition 7. The inscribed polygon process PdS(a’ al,a% a3) of the
derivative scheme has the generator matrix P = Lp; 1 D (L M—l)_l which is
obtained using auxiliary the (M — 1) x (M — 1) matrices

1 1

1 1 1 1 1

i3 1 —3 2 —3

1 . 1

Ly_1= .. 3 (LM—I) = .

1 1 1 1 1
i 3 1 -z 2 —3
1 1
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The derivative and the inscribed polygon processes are equivalent:

Lemma 8. The derivative process 0S(a al, a2 a3) converges uniformly to a
continuous limit function f on [0, n] if and only if the inscribed polygon process
PoS(a’ at, a% a3) converges uniformly to a continuous function g € C[0,n].
Moreover, f = g.

Proof: This equivalence is due to the convex hull property of B-splines, and
to approximation properties of interpolating quadratic C° splines. O

Using the inscribed polygon process, we are now able to discuss the con-
vergence of the spline subdivision scheme to limit functions with higher order
differentiability. We simply have to analyze the divided difference processes
DYPdS(a’ al,a? a%) (see [2, Theorem 4.2]) of the inscribed polygons, as
follows.

Theorem 9. If the l-th order divided difference scheme of the inscribed poly-
gon process P9S(a’, a', a? a3) exists and converges uniformly to f; € C[0,n],
then also the divided difference processes D¥P0S(a’ al, a% a3) exist and
converge uniformly to f, € C**[0,n] for v = 0,1,...,1, and féy) = f..
Hence, the spline subdivision scheme S(a°, al, a2 a3) converges uniformly to

g € C*1[0,n] with g*+1) = f,,.

For instance, in order to prove that the limit function generated by the spline
subdivision scheme is C?, the difference process ADPOS(a® al, a2, a3) of the
divided difference scheme has to be shown to be contractive, analogously to
Section 3.1. The divided difference scheme DP9S(a’, al,a% a3) has the gen-
erator matrix D = 2Ep;_1 P (Ep_1) ™} (1"'M_2). From this matrix we get the

1..M—2
generator matrix C* = Ep_o D (EM_2)_1(}:::%:§) of the associated differ-

ence scheme ADPOS(a’ al,a% a3). In order to guarantee a C? limit function,
the matrix norms ||C} ---C} |, V i; € {0,1} and j = 1,..., L have to be

less than 1 for some L, where Cf = C* (}::%:g), and C7 = C* (i’ﬁ:g)

§4. A Generalized 4-Point Scheme

Based on a geometric construction, Dyn and Levin [3] derived a family of
interpolating 4-point schemes. This family can also be obtained from an
optimization—based approach, as follows. Let the subdivision scheme gen-

erate a sequence of piecewise linear functions Y *) with knots tgk) and control

(k)

points ¢;"’. In order to derive the refinement rules, we replace one segment

of Y(¥) with two new ones (shown as dashed lines in Figure 2, left), subject
to C° boundary conditions. The new vertex qé’fill ) is placed by minimizing
the jumps of the first derivatives between new and old polygons. In fact,

minimizing the weighted linear combination

F(giiD) = e [y ED D)y D Dy 12

+ 20 [VE (N —y FFD (1 0y 12 g [y D (48 )y B (¢ (F) y 12



A B-Spline Approach to Hermite Subdivision 7

- N K kel
) ék) Optimization Optimization ° f% ) f% =
(k+1) 2(\:) (;_4& jw 8w 1;33&) 8w . ék) o F§|k+1)

L

Interpolation

Interpolation

I I I I I I I I I I I I I I I I I I I I
T y — LI a s — y

T T T T T T T
(k) (k) (k+1) (k) (k) (k) (k) (k+1) (k) (k)
i-1 ti 2i+1 i+1 i+2 i-1 ti 2i+1 i+1 i+2

Fig. 2. Weights of objective functions in the point (left) and spline (right) case.

of squared differences of derivatives produces exactly the refinement rules of
the interpolating 4-point scheme.

This approach can be generalized to the spline case. In order to derive
the refinement rules we replace one segment of X %) with two new ones (shown
with dashed control polygons in Figure 2, right), subject to C! boundary con-
ditions. The inner new control points pi’;j_g ), pi’fj_'; ) are placed by minimizing
the jumps of the second derivatives between new and old splines. Minimizing
the weighted linear combination

k k 8w ok k < (k k
F(piiigl),piiié)) =1 [XS +1)(tgi——f-i_11)) - X-(i- +1)(t§ii11)) ]2

(k) o, (K (k1) (K o (k+1) (K (k) (k
+ 8w [ XD @) -XED ) P + 8w [ X ) X P ) P
of the squared differences of the second derivatives gives the refinement masks
30:(0,0,%,i,0,0,0,0), 31:(070,%,%70,070,0),
a®= (0,2 +w, —%-2w,2+3w,3 - 3w, -1 +2w,%-w,0),

a®= (0,2 —w,—1+2w,2—3w,3 +3w, -1 2w, % +w,0),

see (5). In order to analyze C? continuity of the limit function, we compute
the generator matrix of the difference process ADPS(a al, a% a%), which
has to be contractive. Using the techniques of Section 3.1, we estimate the
C? convergence range of the parameter w, see Figure 3.

matrix norms obtained
by considering the composition
of 6 steps, i.e. L=6

C 2 convergence range (marked in grey)

001 000 001 002 003 004 005W

Fig. 3. Estimating the C? convergence range of the generalized 4 point scheme.

Two limit functions interpolating three given Hermite elements have been
drawn in Figure 4 (left). The functions have been generated with the help
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of Merrien’s C! scheme (o = 0.2, dashed curve, cf. [4,7]), and using the
generalized 4-point scheme (w = 0.015, solid curve). As can clearly be seen
from the associated first derivatives (right), the generalized 4-point scheme
produces a C? limit function.

Fig. 4. Interpolatory limit functions (left) and derivatives (right).
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