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Abstract. Rational Bézier curves are discussed from a projective-geometrical
point of view. A projectively invariant Bézier representation of rational curves
is presented. Geometric continuity of second and third order is characterized by
special projective maps. These maps (certain perspective collineations) preserve
curvature properties of a curve at a point. As an application, constructions for
geometrically continuous joints of rational curves are derived.
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Introduction

This paper considers rational curves from a projective-geometrical point of view. First, some
fundamentals from projective geometry are presented. Then, in the second part of this paper,
a projectively invariant Bézier representation of rational curves is derived. This representa-
tion allows to discuss properties of rational curves with help of projective maps.

In recent years, such a representation was found by G. Farin ([Farin’83]). W. Boehm has
observed, that similar considerations were made already in 1870 ([Haase 1870]).

The proof of the projective invariance is analogous to that of the affine invariance in the
polynomial case: A projectively invariant geometric realization of the de Casteljau-algorithm
must be found. This paper presents a realization which is based on Brianchon’s theorem.
The third part of this paper contains a characterization of geometric continuity of second and
third order by special projective maps (perspective collineations). Geometric continuity of sec-
ond resp. third order corresponds to a bundle resp. pencil of conics (see [Geise & Nestler’91]).
The conics of this bundle or pencil and the given curve(s) have a three- or four-point-contact,
respectively. This bundle resp. pencil can be generated by special perspective collineations.
So, geometric continuity of second and third order can be characterized by these maps.

A corollary of this characterization is an invariance property of perspective collineations:
Certain perspective collineations preserve the curvature of a curve at a point. With help of
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this invariance property, a construction of second order continuous joints of rational curves is
derived in the fourth part of this paper.

The ratio 2—; of curvatures of two curves which join with tangent continuity at a com-
mon point is projectively invariant. This is a result of classical projective differential ge-
ometry [Bol’50][Smith 1869]. (An analogous assertion holds for the ratio of torsions.) In
[Pottmann’91] and [Goodman’91], this ratio is expressed in terms of cross ratios of control
and weight points and so a projectively invariant algorithm for curvature continuous joints of
rational curves is found.

In this paper, a direct geometrical construction of curvature continuous joints of rational
curves is derived with help of the invariance property of perspective collineations. This con-
struction is applied to an interpolating second order continuous conic spline. Furthermore,
the construction of the osculating parabola of a conic and conditions for the existence of an
interpolating third order continuous conic spline are presented.

It is quite surprising, that solely using constructive-geometrical methods leads to such far
reaching results.

The authors wish to thank Prof. J. Hoschek for his interest and for his very helpful comments.

1 Fundamentals

In this section, some fundamentals from projective geometry are presented. For further de-
tails, the reader is referred to [Coxeter’64] or [Blaschke’54].

The following considerations assume that we are working in the projectively closed real Eu-
clidean plane. Its points (a, b, ¢, ...) and lines (&, b, &, ...) are described by homogeneous
coordinate vectors from IR3. The point p lies on the line 1 iff p'1 = 0. The cartesian co-

ordinate vectors of (finite) points are a, b, ¢, ... . They result from dividing by the 0-th
components:
Po
1
p = — P1 where p = 1 . (1)
- po \ P2
p2

The symbols A and V denote the intersection of lines and the connection of points, respectively.
The coordinate vectors of intersection points and of connecting lines can be computed by the
usual vector product.

A non-degenerated linear map of IR3

3 3. w(p) = Ap for points p

m:RE = R { 7(1) = (A=1)T1 for lines I @)
(where A is an nonsingular (3, 3)-matrix) is called a projective collineation of the projectively
closed real Euclidean plane. It maps points to points and lines to lines.

A projective collineation 7 is called a perspective collineation, if it preserves a line a pointwise
(i.e. all points of & are fixed points of 7), and a point z linewise (i.e. all lines through z are
fixed lines of 7). The line & is the azis, the point z is the centre of 7. (If z'4 # 0, then the
matrix A of a perspective collineation has exactly two real eigenvalues: a single and a double
one, where all eigenspaces are non-degenerated.)

A perspective collineation is uniquely determined by the axis &, the centre z and one pair
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Figure 1: A perspective collineation

(p, m(p)) consisting of a point p and its image under 7 (where the line pV 7(p) passes through
z and the axis as well as the centre are not incident with p and 7(p)). The image 7(x) of an
arbitrary point x under 7 can be constructed by (cf. fig.1)
1) q = aN(xVp) . 3)

= (z2Vx)A(qVn(p))

=8
X
|

Leta=aipt+azq,b=01p+ P29 f=p1p+ v2q and x = & p + & q be four points on a
linepVq (e, .., & € R). The real number

i )% 5)
cr(a,b,f,x) := (4)
det( P1 61)-det<a1 A1 )
w2 &2 as [
is called the cross ratio of the four points. It is invariant under projective maps. If all points
are finite, it can be expressed in terms of signed (oriented) Euclidean distances dist(., .):

dist(a,x) - dist(f, b)
fx) = '
cr(a,b, ;X) dist(f, X) . diSt(aa b) (5)

The four points a, b, f, x are said to be in harmonic position if their cross ratio is equal to
0.5, —1 or 2.

If the last point x runs through i, equation (4) defines a projective scale on the line i, ie. a
bijective map 1 — R U {oc}.

Let B be a symmetric nonsingular (3, 3)-matrix. The set of all points x satisfying x " Bx = 0
forms a conic.

A conic is uniquely determined by five of its tangents. Six tangents I; (1t = 1,..,6) of a
conic are connected by Brianchon’s theorem: The three lines (I; A 1;) V (I A L) (where
(¢,7,k,1) € {(1,2,4,5),(2,3,5,6), (3,4,6,1)}) intersect in one point, the so-called Brianchon’s
point.

Let two projective scales on two lines f and g be given. The system of lines connecting
corresponding points of both scales (i.e. points which correspond to the same real number)
envelops a conic or all lines pass through one point (Steiner’s generation of conics). This fact
yields the parametric representation of a conic as a rational curve of degree two.

2 Rational curves and their Bézier polygon

A projectively invariant Bézier representation of rational curves is presented in this section. As
a first application, linear-fractional parameter transformations of these curves are discussed.
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Figure 2: The Bézier polygon of a rational curve
2.1 Interior and exterior weight points

Let "
x(t) =) Bl'(t)b; te[0,1] (6)
i=0

(with the Bernstein polynomials B(t) = (7)t'(1 —¢)" % ) be the homogeneous coordinates
of a given rational Bézier curve of degree n. Usually, the control points b; € IR? are written

in the inhomogeneous form
1
b,‘ = wj - ( hz ) (7)

with weights w; € IR. Obviously, this description excludes points at infinity. In addition
to the control points, interior weight points w; ;41 = b; + b;11 and exterior weight points
fiit1 = b; — b;;1 are introduced (i = 0,..,m — 1). The control and weight points form the
Bézier polygon of the given curve (see fig.2). The interior weight points have been introduced
by Farin [Farin’83]. The point w; ;1 divides the line segment b; Vb;;1 of the Bézier polygon
by the ratio w;y1 : w; . The four points by, b;y1,w; 41 and f; ;41 are in harmonic position.
They define a projective scale on the line b; V b;y1:

b; Vb1 — R U {oo0}
p = cr(b;,bit1,fiit1,p)

(8)

With respect to this scale, the four points b; , w; ;1 , b;+1 and f;;41 correspond to 0, 0.5,
1 and oo, respectively.

2.2 Geometric realizations of the de Casteljau-algorithm

With help of the projective scales on the lines of the Bézier polygon, geometric realizations
of the de Casteljau-algorithm can be derived. Farin has developed such a realization using
constant cross ratios [Farin’83]. Another one is based on Brianchon’s theorem (Similar con-
siderations can already be found in [Haase 1870] ! This paper discusses the existence of a
rational parametric representation of an algebraic curve. Then the parameter of this repre-
sentation is shown to have a projective-geometrical meaning. A de Casteljau-like construction
based on Brianchon’s theorem is derived finally.):

The basic step of the de Casteljau-algorithm is replaced by the doublestep:

bl
bl

. ? . . . .

bl = BT =BRON + BIObL + BIObL, 9)
J

. i+1

b2

Rational curves of degree two are conics. A tangent element of a curve is "tangent plus point
of contact”. The conic (9) is determined by the two tangent elements ” (b} V b! 1 plus b?”
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Figure 3: The doublestep-construction

Figure 4: A geometric realization of the de Casteljau-algorithm

and ” (b],, VbI{]) plus bl,,” and by the tangent b/™' v b/{| . The point bj™” is the
point of contact of the conic and its tangent b Ty 31’11 . It can be constructed by applying
Brianchon’s theorem to three tangent elements. These tangent elements are considered as

double tangents. The points of contact figure as intersection points of these double tangents
(fig. 3):

L) b= (Vi) A (0 VD) (10)
2) b = ®lyvh) A BV

The point p is Brianchon’s point.
With help of this construction, the de Casteljau-algorithm can be realized geometrically:
Let the parameter ¢ € [0,1] be given.

1.) b):=b;(i=0,..,n)
2.) Find the points b} on b? Vb?,; from ¢ = er(b?, b, ,fii11,b;) !
(i=0,.,n—1) (11)
3.) Find bg from the above construction (10) ! (j =2,..,n;1=0,..,n — j)
4.) x(t) := by (see fig.4)

(The degenerated case of several bg being collinear has to be excluded in construction (10).
It can be handled by mapping a non-degenerated situation to the degenerated one with help
of a degenerated projective map.)

Both realizations are invariant under projective maps. Thus we have proved:

Theorem. The relationship between rational curves and their Bézier polygon is projectively
invariant.

The control and weight points form a projectively invariant Bézier representation of a rational
curve. This fact is the basis of the considerations in the next sections. Analogous assertions
hold for dual Bézier curves (see [Hoschek’83]) and Bézier surfaces (cf. [Jittler’92]). (In
the case of Bézier surfaces, each mesh of the Bézier polygon net carries four interior (resp.
exterior) weight points, but these weight points cannot be chosen arbitrarily: They have to
be coplanar.)

2.3 Linear-fractional parameter transformations

A rational Bézier curve can be reparameterized by a linear-fractional parameter transforma-
tion
r) = fo b (fo € R U {o0}) (12)
to+(t—1)-(2tg—1) *°

(cf. e.g. [Farin & Worsey’91], [Patterson’86]). This transformation preserves the control

points b;. It can be formulated in a geometric way: Let w;, , and f;,,; be the points

*

2.0+
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Figure 5: A linear-fractional parameter transformation

*

Figure 6: The perspective collineation 7 pyp

corresponding to a given parameter value ¢y and to tgtofl with respect to the projective scale

(8) on b; V bj;1, respectively. The control points b; (i = 0,..,n) and the new weight points
w1 and f; ; (i = 0,..,m — 1) describe the reparameterized Bézier curve (fig. 5). For
to = oo, the above transformation (12) permutes interior and exterior weight points and
yields the complementary segment of the given curve.

3 Geometric continuity and perspective collineations

Now, a characterization of geometric continuity of second and third order by special projec-
tive maps is derived.
Certain perspective collineations preserve the curvature of a given curve at a point:

Lemma. Let x = x(t) be a curve, X9 = x(ty) one of its points and t = x(to) V X(ty) the
tangent at xg. The curve x is assumed to be at least four times continuously differentiable at
t = to. Let & be an arbitrary line (# t) through xo and z be an arbitrary point (# x¢) on t,
and let ©, 709 and 71 pe perspective collineations

(i) with centre xo and azis &,
(ii) with centre z and azis t and
(iii) with centre xo and azis t, respectively.

Then the curves x(t), 70 (x(t)) and 7 (x(t)) have a three-point-contact (i.e. a G*-joint)
and the curves x(t) and 7" (x(t)) even have a four-point-contact (i.e. a G®-joint) at xq.

The figures 6, 7 and 8 show the perspective collineations 7@ 709 and 7(#) in the case of
rational quadratic Bézier curves. Additionally, ¢t = 0, i.e. xg = bg is chosen.

Proof. Instead of the occuring curves, their osculating conics at x¢ (i.e. the unique conics
having a five-point-contact, cf. [Bol’50]) can be considered. (In [Geise & Nestler’91], Bézier
representations of the conics having three-, four- or five-point-contacts with a given curve are
derived.) Obviously, it is sufficient to prove the above assertion for conics x.

The set of the images 7(!) (x) of the given conic x under all perspective collineations of type (i)
forms a pencil of conics. All conics of such a pencil pass through four common points (which
may be complex or multiple). Here, these four points are fixed points under the collineations
7@, Thus, they have to lie on the axis 4. The conic x and the axis & intersect in exactly two
points: in xy and a second one p. The second intersection point p cannot be a multiple point
of the pencil of conics as the perspective collineations 7(* do not preserve the tangent of x at
p- Thus, xq is a triple point of the pencil of conics: All conics of the pencil have a three-point
contact at xq.

*

Figure 7: The perspective collineation () pyp
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Figure 8: The perspective collineation 7(#9): py p*

The proof of case (ii) is dual to the above. Analogous deductions prove case (iii). L]

If in case (ii) the infinite point of the tangent t is chosen as centre z, our lemma yields a
well known result from the theory of polynomial Bézier curves: The control point by of a
polynomial Bézier curve can be shifted along a parallel to by V b; without influencing the
curvature of the curve at by .

In case of conics, the converse of the above lemma holds as well. Thus we have:

Theorem. Two curves x(t) and y(T) have at a common point x(ty) = y(r0) a G2-joint
(a G3-joint), if and only if their osculating conics are connected by a perspective collineation

of type (i) or (ii) (of type(iii)).
Now, the perspective collineations 7(9), 7% 7(#) will be used for the construction of geo-
metrically continuous joints between rational Bézier curves.

4 Geometrically continuous joints between Bézier curves

With help of the perspective collineations of the above lemma, a construction of G2-joints
between Bézier curves is derived in this section. As an example, interpolating conic splines
with second order continuity are discussed.

The third case of the above lemma allows to construct the osculating parabola of a conic
(i.e. the unique parabola having a four-point-contact). Furthermore, necessary and sufficient
conditions for the existence of an interpolating conic spline with third order continuity can
be formulated.

4.1 Construction of G*-joints

Let b; (¢ = —n,..,0) and w; ;41 resp. ;41 (j = —n,..,—1) be the control points and the
interior resp. exterior weight points of a given rational Bézier curve of degree n (n > 2).
This curve is to be continued by a second rational Bézier curve of degree n at its point by .
The control and weight points of the second curve are b; (i =0,..,n) and w; j1 resp. f; 1
(j =0,..,n —1). The first control point b; is assumed to lie on b_; V by: This guarantees
the first order continuity of both curves at by . The weight points wg 1, fy.1 and w12, f1 0 are
considered unknown. The control points b_o, b_; and by resp. by, b; and by are assumed
to be not collinear.

Both curves should join with second order continuity at bg. Meeting this requirement will
produce the unknown weight points w1, fy.1 and w1 o, fi. 2. They can be constructed as images
of the given weight points w_o _1, f_o _1 and w_1 g, f_1,9 under two perspective collineations:
The first perspective collineation 7(?) has the centre by and the axis

a=by V(b2 Vb 1)A (b1 Vby)) (13)
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Figure 9: The first perspective collineation
Figure 10: The second perspective collineation

and it maps b_; into by (see fig.9). The points 7®(b_3), by = 7 (b_;) and by are
collinear. The second perspective collineation 7(%) has the centre b; and the axis b_; V by
and it maps 7 (b_y ) into by (see fig.10). The given curve and its image under 7(*) o 7(?)
join with second order continuity at their common point by (see the above lemmal!). The
control and weight points of the image of the given curve are by, by, by, 7(®) (7()(b_3)), ...

and B ) y .
wor = 7@ (O (£ 1)), fo1 = 7@ @EO(w_10)),

wia = a@E (s ),  fp = 2@ (w_y_y)), .. (14)

(The perspective collineations 7(*), 7(#) preserve the orientation of the given curve. Thus, the
image of the complementary segment of the given curve is chosen as the new interior segment:
Interior and exterior weight points are permuted.)

The control and weight points bs, by, ... and wa 3, fo.3, W34, f34, ... do not influence the
curvature of the second curve at bg. They can be chosen arbitrarily.

A possible realization of the whole construction is:

First perspective collineation (see fig.9):

1.) a = by V ((b_g Vb_q ) N (b1 V by ))
2.) o = (b_Q Vb()) N (b1 ng)
3.) h = (f_g__l \Y b()) A (b1 V by )
4.) Wp.1 = (bo \% b1 ) A (h \% (é A (f_1_0 \% f_g__l)))
Second perspective collineation (see fig.10): (15)
Let g be an arbitrary line # by V by through by !
5) p = (bo VC)Ag
6) a == (boVb2)Ag
7) r = (pVh)A(by Vby)
8.) W19 = (q \Y T) N (b1 V by )

(A permutation of f with w yields the construction of the unknown exterior weight points.
The figures 9 and 10 shows the construction (15) in the case of rational quadratic curves, i.e.
for n =2.)

The solution of the problem (to find the unknown weight points wq 1, fo.1 and wy o, fi9) is
uniquely determined up to linear-fractional parameter transformations (12). This results e.g.
from Boehm’s formula for the curvature  of a rational Bézier curve at its first control point
(see [Boehm’87]) or from the continuity constraints developed in [Degen’88]. Thus we have:

Theorem. The two given curves described by the control and weight points b_, , ..., bg;
W_n.—n+1s f—n.—nt1, -y W_1.0, fo10 and bo, ..., by ; Wo1, fo.1, .., Wn_1.n, fn—1.n (where bg,
b_1 and by are assumed to be collinear and b_o, b_1 and by to be not collinear) have at
by a three-point-contact (i.e. a G*-joint) if and only if the weight points wo1, fo.1 and w2,
f1.0 result from the weight points w_10, -1 and w_o 1, f_ 9.1 by construction (15) and a
linear-fractional parameter transformation (12).

In figure 11a, an interpolating G2-conic spline is constructed using the above construction
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a) One step of construction of the spline

b) wy = 0.5
c)w1—10
d)w1—20

Figure 11: The construction of an interpolating G2-conic spline

Figure 12: The construction of the osculating parabola of a conic

(15). The conic segments are described by rational Bézier curves of degree two. The spline
interpolates the four tangent elements ” by V by plus bg”, by V by plus by”, "bs V bs
plus by” and "bs V bg plus bg” . In fig.11, the first segment of the conic spline is given
in standard form (wy = we = 1). The weight w; of the first control point can be chosen
arbitrarily. The figures 11b,c,d illustrate the influence of wi: By increasing wi, the whole
spline curve is pulled to the edges of the control polygon. The weight w; can be viewed as a
global tension parameter of the curve.

4.2 The osculating parabola of a conic

Polynomial Bézier curves of degree two are parabolas (i.e. the infinite line is a tangent of
these curves). Let a rational curve of degree two with the control and weight points by, by,
by and wq 1, fo.1, w12, f1.0 be given. The three control points by, b; and by are assumed to
be not collinear.

The given curve is a parabola iff 3} = 7t (cf. e.g. [Lee’87]). This condition can be expressed

wo
in terms of ratios of the control and weight points:

dist(bg ,W1_2) _ dist(bl ,W0_1)

= 16
dist(wl_g, b1 ) diSt(Wo_l, b() ) ( )

Generally, this condition is not fulfilled.
Consider perspective collineations with centre by and axis by V by. There exists a unique
perspective collineation (%) mapping the given conic to a parabola (see fig.12):

Find the point p on by V by from dist(bg,p) = dist(wp.1,b1) !

Construct the parallel 1to by V by through p !

W’{_Q = i/\ (b() \Y W1_2) (17)
2= (b1 Vwi,) A(by Vbs)

by :=bo, Ww§,:=wo1, bj:=bs

U W N =

The image of the given curve under the perspective collineation 7(#) has the control and
weight points by, by, by and w§ , £ 1, Wi, f] 5. Resulting from 1.) and from the intercept
theorems, it fulfills condition (16): The image curve is a parabola. The given curve and its
image under 7(#) have a four-point-contact at by (see the above lemma). Thus, the image
curve is the osculating parabola of the given conic at by .

It can be reparametrized by linear-fractional parameter transformations (12). One of the
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Figure 13: The relation between bg and the number of poles

possible parametrizations is a polynomial one: The interior weight points are the midpoints
of the segments and the exterior weight points are the infinite points of the lines of the Bézier

polygon.

4.3 The existence of an interpolating G®-conic spline

Let a conic segment with the control and weight points b_s, b_1, by and w_o 1, f_o _1,
w_10, f_1.0 be given. This curve is to be continued by a second conic segment at its point
bg. One point of this second conic segment is assumed to be known, it is chosen as control
point by. Both curves should have a four-point-contact (i.e. a G3-joint) at their common
point by . The second conic segment is uniquely determined by these constraints.

Generally, the second segment may intersect the infinite line. Such intersection points (i.e.
poles) are undesired in practical applications. How does the number of poles depend on the
given point by ?

The answer to this question is given in fig.13: If bs € M;, then the second conic segment
has exactly 4 poles (i = 0,1,2). The auxiliary curve p is the osculating parabola of the given
conic segment at by .

This answer follows immediately by considering the perspective collineations with axis b_; Vv
by and centre by. They generate all possible second segments. The osculating parabola p
separates the solutions of our interpolation problem with respect to the number of its poles.

Conclusion

The constructions concerning geometric continuity of second order can be directly generalized
to non-planar curves: They then take place in the osculating plane of the occuring curves.
In [Juttler’92], geometric realizations of the algorithms for subdivision and degree elevation
of rational Bézier curves are derived. Furthermore, the de Casteljau-algorithm is shown to
be a generalization of Steiner’s generation of conics. In this sense, rational Bézier curves of
arbitrary degree are generalized conics.

The authors believe that the constructive-geometric considerations of this paper allow to de-
velop a better qualitative understanding of the rational Bézier technique. Obviously these
considerations cannot (and they do not intend to) replace the analytical discussion of rational
Bézier curves. But the power of the pure constructive-geometrical methods is quite surprising.
For example, the analytical discussion of the conditions for the existence of an interpolating
third order continuous conic spline seems to be more expenditious than the geometrical ap-
proach presented in this paper.
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