A Geometrical Approach
to Interpolation on Quadric Surfaces

B. Jittler and R. Dietz

Abstract. The paper presents a very powerful construction for ra-
tional curves and surfaces on quadrics. Based on a result of number
theory, a generalization of the stereographic projection is introduced
in the case of the unit sphere. With help of this map, interpola-
tion with spherical rational curves is shown to be a linear problem.
The existence of a quadratic triangular and of a biquadratic tensor—
product Bézier patch on the sphere interpolating given boundaries
is discussed. The final section outlines the extension to arbitrary
non—-degenerated quadric surfaces.

§1. Introduction

Quadric surfaces (like ellipsoids, hyperboloids of one or two sheets, etc.) play
traditionally an important role in several industrial applications. In order to
include them into computer-aided design systems, a mathematical description
of curve segments and of surface patches on quadrics is required. Rational
parametric representations of curves and surfaces (e.g., NURBS-curves and
-surfaces) support the exact description of conic sections and quadric surfaces.

In recent years, several authors have developed different constructions for
rational curves and surfaces on quadrics [1,8,9,12,14,...]. Most of these papers
are based on the use of the classical stereographic projection.

In the case of the unit sphere U, the stereographic projection o connects
the points of the equator plane P (z = 0) with those of the sphere. The north
pole z of the sphere is chosen as the centre of projection. The line connecting
the north pole with an arbitrary point p of the equator plane intersects the
sphere in z and in a second intersection point o(p) (see Fig. 1).
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The map p — o(p) from the equator plane P to the unit sphere U is
called the stereographic projection with centre z. It will be described with help
of homogeneous coordinates. These coordinates are defined by the relation

lix:y:z=x¢:21:T2: T3 (1)

(see [2]), and the bold letter x = (zo 21 22 23)' denotes the homogeneous
coordinates of a point in three-dimensional space.

The image of a point p = (po p1 p2 0) ' on the equator plane P under
the stereographic projection o is the point
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on the sphere. The image of a rational curve (resp. surface) on the equator
plane under o is a rational curve (resp. surface) on the sphere. But the
stereographic projection has an important disadvantage: it does not yield
all irreducible rational curves and surfaces on quadrics. (A rational curve
resp. surface is said to be irreducible, if its homogeneous coordinates do not
have any common linear factors, i.e., if gcd(xo,x1,%2,23) = 1 holds.) For
instance, it is impossible to construct all biquadratic rational Bézier surface
patches as the images of bilinear patches under a stereographic projection.
(Some counterexamples have been found by Geise and Langbecker [9], by
Boehm and Hansford [1], and by Fink [8].)

The present paper deals with a generalization of the stereographic pro-
jection. Based on a result of number theory, the generalized stereographic
projection has been developed by Dietz et al. [5,6]. This paper discusses some
geometrical aspects of the method.

At first, the generalized stereographic projection is introduced in the
case of the unit sphere as a representative of the class of oval quadric surfaces
(ellipsoids, hyperboloids of two sheets, etc.). Then, the method is applied to
interpolation with spherical rational curves and to the construction of rational
surface patches on the sphere. The final section outlines the extension of the
results to the hyperbolic paraboloid as a representative of the class of doubly—
ruled quadric surfaces (hyperbolic paraboloids and hyperboloids of one sheet).

§2. The Generalized Stereographic Projection

Using homogeneous coordinates (1), the unit sphere U is given by the implicit
equation
ud = uf +ud + uj. (3)

The following considerations are based on an algebraic approach to ratio-
nal curves and surfaces on the sphere as introduced in [11]. The homogeneous
coordinates of a rational curve resp. of a rational tensor—product surface on
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the sphere have to satisfy equation (3). Thus, this curve resp. this surface
can be considered as a solution of the diophantic equation (3) in the ring of
polynomials R[t] resp. in the ring of bivariate polynomials R[u, v].

Already in 1868, V. A. Lebesgue has found the representation formula

uo ré+ri+ri+rd

U1 _ 2’/‘0’/‘1 — 27‘2’/‘3 _. (S(I‘) (4)
U9 2’/‘1’/‘3+2’f‘0’l‘2

U3z 7"12—1-7“22—7“02—7“32

for all irreducible solutions of equation (3) in the ring of integers [3]. This
formula can be directly generalized to arbitrary polynomial rings [5].

Of course, a geometric interpretation of the representation formula (4)
would be very helpful for the construction of rational curves and surfaces on
quadrics. So we define a map:

Definition 1. The map r € E3 — §(r) € U from the three-dimensional
space (which is projectively completed by adding points at infinity) to the
unit sphere U (see (4)) is called the generalized stereographic projection.

Now, the algebraic properties of the representation formula (4) can be for-
mulated geometrically: any irreducible spherical rational curve of polynomial
degree 2n (resp. spherical rational tensor—product surface of degree (2m,2n))
can be constructed as the image of a spatial rational curve of polynomial
degree n (resp. of a spatial rational tensor—product surface of degree (m,n))
under the generalized stereographic projection §.

For r3 = 0, the representation formula (4) yields exactly the classical
stereographic projection (2). Thus we have the following

Proposition 2. The restriction of the generalized stereographic projection ¢ :
E3 — U to the equator plane r3 = 0 of the unit sphere U is the stereographic
projection o : P — U.

Of course, the properties of the classical stereographic projection o are well
known. For example, this map preserves circles, i.e., the image of a circle or
a line on the equator plane under the stereographic projection is a circle on
the sphere. In order to discuss the generalized stereographic projection, this
map is decomposed into the classical stereographic projection and an auxiliary
map 6.

Theorem 3. The generalized stereographic projection § : E3® — U is the
composition of the hyperbolic projection 0 : r € E3 — 0(r) € P, where

ré +r3
_ roT1y — T2T3
0(r)— rirs +1ror2 |’ (5)
0

with the stereographic projection o : P — U, i.e., 6(r) = o(0(r)).

The proof results from straightforward calculations. Figure 1 shows the gen-
eralized stereographic projection and its decomposition. At first, the points
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of the three-dimensional space are mapped to the equator plane P by the
hyperbolic projection, and then they are mapped to the unit sphere U with
help of the stereographic projection.

Figure 1. The generalized stereographic projection.
The discussion of the hyperbolic projection starts with the inverse image
of a point.

Proposition 4. The inverse image of a point p = (po p1 p2 0)7 of the
equator plane P under the hyperbolic projection 6 (see (5)) is the line
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in three-dimensional space. This line intersects the equator plane in its image
under 6, so it will be called a projecting line of the hyperbolic projection.
Resulting from Theorem 3, the inverse image of a point u = (ug u1 uz uz )’
under the generalized stereographic projection § is the line (6), where p =
o™ (u) = ( (uo —uz) uy ug 0)7.

The projecting lines (6) of the hyperbolic projection are located on hyper-
boloids of revolution around the z—axis. They form an elliptic linear congru-
ence of lines [10] (or a net of lines), i.e., they pass through two distinct focal
lines, which are both conjugate—complex and at infinity. The hyperbolic pro-
jection 0 (see (5)) is a special net projection, i.e., a projection with respect
to a net of lines.
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The net projection has been introduced by Tuschel in 1911 in order to
develop a constructive geometry for helices [13]. A second approach to the net
projection has been discovered by Wunderlich in 1936: it can be considered
as a non—Euclidean parallel projection [15].

The next proposition summarizes some properties of the hyperbolic pro-
jection (cf. [7]) and the resulting properties of the generalized stereographic
projection.

Proposition 5. The image of an arbitrary non—projecting line under the hy-
perbolic projection is a circle or a line on the equator plane P. Its image under
the generalized stereographic projection is a circle on the sphere (because the
stereographic projection preserves circles).

The inverse image of a circle on the sphere under the generalized stereo-
graphic projection is a ruled surface formed by projecting lines. This ruled
surface proves out to be either a hyperbolic paraboloid or a hyperboloid of
one sheet.

Any plane in three-dimensional space contains exactly one projecting
line (6) of the hyperbolic projection. Thus, the generalized stereographic
projection maps the lines of a fixed plane to the circles through one fixed
point. This point corresponds to the projecting line contained in the given
plane.

The special role of the circles in the equator plane P results from the fact,
that the two focal lines of the elliptic linear congruence of lines intersect the
equator plane in the two circular points at infinity.

The next section applies the generalized stereographic projection to the
construction of an interpolating spherical rational curve.

§3. Interpolation with Spherical Rational Curves

Let m+1 points p; on the unit sphere U with parameters t; € R (i = 0,..,m)
be given. These points are to be interpolated by a spherical rational curve
x(t). Such a curve can be constructed with help of the following algorithm:

1. Find the inverse images of the given points p; under the generalized
stereographic projection (cf. Proposition 4)! These inverse images are
certain projecting lines in three-dimensional space.

2. Construct a spatial rational curve y(t) which passes through the inverse
images of the given points! The point y(¢;) has to be located on the
inverse image of the given point p;. The spatial curve y(¢) can be found
by solving a linear system of equations.

3. Apply the generalized stereographic projection § to the spatial curve y(t)!
Its image is the required interpolating curve x(¢) on the unit sphere.

Note that the interpolating spherical curve is found by solving a linear system
of equations. Thus, interpolation with rational curves on quadrics proves out
to be a linear problem. The details of the method and some properties of the
obtained solution will be discussed in [4].
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¢4. Rational Surface Patches on the Sphere

This section briefly discusses the construction of quadratic triangular and
of biquadratic tensor—product surface patches on the sphere. Any spherical
quadratic triangular patch

x(u, v, w) = Z Biz,mk(u,v,w) Cijr (Wv,w>0ut+tv+w=1) (7)
i+j+hk=2
n!

AFD
nomials and the c; jr € R* are the homogeneous control points) can be
constructed as the image of a linear triangular patch under the generalized
stereographic projection. The boundaries of this linear patch are three lines
in three-dimensional space, and these three lines are contained in a plane. Re-
sulting from the third part of Proposition 5, the three boundary circles of the
quadratic triangular patch (7) (which are the images of the three boundary
lines of the linear patch under ¢) must intersect in one point.

(where the By, ; (u,v,w) = u‘vIwk denote the trivariate Bernstein poly-

Theorem 6. If the quadratic triangular surface patch (7) is part of the
sphere, then its three boundaries intersect in one point. Conversely, if three
spherical circles satisfy this condition, then they can be interpolated by a
spherical quadratic triangular patch.

This theorem has been discovered by Sederberg and Anderson by discussing
Steiner surface patches on quadrics [12].

Now, the method is applied to biquadratic tensor—product surface patches
on the sphere. Any spherical biquadratic patch

yw,0) =) > Biw)Bj(v)bi; ((uv)€[0,1] x[0,1]) (8)

i=0 §=0

(where the BP(t) = (7})t*(1 — ¢)"~* denote the Bernstein polynomials and
the b; ; € R* are the homogeneous control points) can be constructed as the
image of a bilinear patch under the generalized stereographic projection. The
four boundary circles of the spherical patch (8) intersect in the four corner
points p; and in four second intersection points q; (i=1,..,4), see Fig. 2.

In [5], a condition analogous to that of Theorem 6 has been derived:

Theorem 7. If the biquadratic patch (8) is part of the sphere, then the four
points p1,qz,P3, qs4 (or equivalently qi,p2,ds, p4) are located on one circle
(see Fig. 2). Conversely, if four spherical circles satisfy this condition, then
they can be interpolated by a spherical biquadratic patch.

Using the generalized stereographic projection, this theorem can be proved
directly (see [5]). The four control points of the bilinear patch (which is
the preimage of the biquadratic patch) span two planes, and the circle from
Theorem 7 is the image of the line, in which the two planes intersect.

The equivalence of the existence of the two circles in Theorem 7 is known
as Miquel’s Theorem in the foundations of geometry.
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Figure 2. The boundaries of the spherical biquadratic patch.
(a) Scheme of the boundaries, (b) The spherical patch.

§5. Extension to Other Quadric Surfaces

This section outlines the discussion of the hyperbolic paraboloid
hohs = hihs (9)

as a representative of doubly—ruled quadric surfaces. In [5], the representation
formula

ho = ror hy =mrir
0 o073 1 173 (10)
ho = o2 hs = r172

has been given which is analogous to that of the unit sphere (2).

Again, this formula is considered as a generalized stereographic projec-
tion. This map proves out to be the composition of a net projection (with
respect to a hyperbolic linear congruence of lines) with a stereographic pro-
jection. Rational curves and surfaces on the hyperbolic paraboloid can be
constructed similarly to the case of the unit sphere, see [6].

Any non-degenerated oval resp. doubly-ruled quadric surface is the image
of the unit sphere resp. of the hyperbolic paraboloid under an appropriate
projective map. (For instance, this map can be constructed with help of a
principal axes transformation, see [6].) Thus, the methods and results of
this paper can be directly generalized to arbitrary non—degenerated quadric
surfaces.
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