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Institute of Applied Geometry, Johannes Kepler University, Linz, Austria

Abstract

We describe a method for approximate parameterization
of a planar algebraic curve by a rational Bézier (spline)
curve. After briefly discussing exact methods for param-
eterization and methods for rational interpolation, we de-
scribe a new technique for rational parameterization. Our
approach is based on the minimization of a suitable non–
linear objective function, which takes both the distance
from the curve and the positivity of the weight function
(i.e., the numerator of the rational parametric representa-
tion) into account. The solution is computed by using an
SQP–type optimization technique. In addition, we use a
region–growing–type approach in order to obtain a good
initial solution, which is crucial for the convergence of
the nonlinear optimization procedure.
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[Mathematics of Computing]: Numerical Analysis—
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Modeling
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1 Introduction

Among other possibilities, piecewise rational paramet-
ric representations [Hoschek and Lasser 1993] (NURBS
– Non–Uniform Rational B–Splines) and implicitly de-
fined curves and surfaces [Bloomenthal 1997] are two of
the main approaches for describing geometrical objects
in Computer Aided Design and Geometric Modeling.
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Until recently, most industrial applications were dom-
inated by parametric representations. However, many
computational problems (such as the analysis and com-
putation of surface–surface intersections) are much sim-
pler to deal with if both representations are available.
This has motivated research on conversion methods be-
tween the implicit and the parametric form: implicitiza-
tion and parameterization.

Exact methods for implicitization have been thoroughly
explored in the field of Computer Algebra. Exact implic-
itization techniques rely on symbolic tools such as resul-
tants [Cox et al. 1997], Gröbner bases, or moving curves
and surfaces (syzygies) [Sederberg and Chen 1995].
They have some associated difficulties; e.g., even moder-
ate polynomial degrees may generate huge data volumes
and the result may suffer from unwanted/unexpected sin-
gular points. As an alternative, approximate techniques
for generating implicit representations have emerged
[Corless et al. 2001; Dokken 2001; Jüttler and Felis
2002; Jüttler et al. 2003; Sederberg et al. 1999]. Cur-
rently, the potential applications in industry (in partic-
ular addressing the issue of robustness of intersection
algorithms) are under investigation in a European RTD
project [Dokken et al. 2002–2005].

Exact parameterization of algebraic curves and surfaces
is possible only for a very special subclass, which is
characterized by a sufficiently high number of singulari-
ties. The zero contour

�
p ��� 2 � f � p �
	 0 � of a bivariate

polynomial f � p � : � 2 � � of degree n defines an alge-
braic curve of order n. This curves is said to be ratio-
nal (or, equivalently, to have genus zero), if the num-
ber of singular points (counted with multiplicities) equals n � 1

2 � . Such curves admit a rational parametric repre-
sentation. It can be generated by considering an auxil-
iary one–parameter family of curves. Roughly speaking,
the curves of this family are to pass through the singular
points and a certain number of additional ones.

In the simplest case, n 	 2, the auxiliary family of curves
can be chosen as the pencil of lines passing through a
point on the curve. The coordinates of the second inter-
section are rational functions of the parameter of the pen-
cil. As a second example, we consider a general rational
quartic curve. It is characterized by three singular points,
see Figure 1. The rational quartic can be parameterized
by generating the pencil of conics through four points on
the quartic, three of them being the three double points.
The conics intersect the quartic in 8 points, but 7 of them
are already known to be the three singular points (each



of them counts twice) and the additional point. Conse-
quently, the coordinates remaining intersection can be
computed as a rational function of the parameter of the
pencil, which leads to the rational parameterization.
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Figure 1: A pencil of conics (black) through the three
double points ( � ) and one additional point ( � ) can be used
for parameterizing a rational quartic curve (grey). In this
example, the three double points are all real.

The general parameterization problem for rational sur-
faces was solved fairly recently [Schicho 1998]. In
addition a number of approximate methods exist (see,
e.g., [Bajaj and Xu 1997]), mostly producing polynomial
parametric representations.

This paper is devoted to approximate parameterization
of implicitly defined (not necessarily algebraic) planar
curves by rational Bézier (spline) curves. As the main
new feature, we actually use the degrees of freedom pro-
vided by the weights of the control points (i.e., by the
denominator of the parametric representation). Conse-
quently the method is able to give essentially exact re-
sults for curves of algebraic genus zero. The result-
ing non–linear optimization problem is solved efficiently
by using sequential quadratic programming (SQP). This
technique is described in more some detail in Section 3.
In addition, we discuss a method for rational interpola-
tion (Section 2), which provides additional motivation for
our approach.

2 Rational interpolation

While interpolation by polynomial (spline) curves is well
understood, the analogous problem for rational paramet-
ric representations has not received much attention. In
the rational case, the weights of the control points (i.e.,
the denominator of the curve) provide some additional

degrees of freedom, and it seems to be natural to use them
for interpolating additional points.

An optimization–based approach has been taken in the
Ph.D. thesis of Tae–Wan Kim [Kim 1996]: Given k
points pi with associated parameters ti (which can be es-
timated from the data. e.g., using a chordal or centripetal
parameterization), he constructs a rational Bézier or B–
spline curve with the homogeneous coordinates

c̄ � t � 	 � x � t ��� y � t ��� w � t � �
	 d

∑
i � 0

Bd
i � t � � bi � 1 � bi � 2 � wi ��� (1)

where B � ti � are the Bernstein polynomials or, more gen-
eral, B-splines. The interpolation conditions

x � ti � 	 w � ti � pi � 2
y � ti � 	 w � ti � pi � 2

� i 	 1 ������� k (2)

lead to 2k homogeneous linear equations for the 3d
	

3
unknown components of the control points. These com-
ponents are then found by minimizing the objective func-
tion

d

∑
i � 0

� wi 
 1 � 2 � Min (3)

subject to the linear inequalities wi
� ε and to the inter-

polation conditions (2), where ε with 0 � ε �� 1 is a
user–defined constant.

The linear inequalities are needed in order to obtain a
positive denominator. It is possible to derive weaker suf-
ficient positivity conditions via subdivision.

The resulting quadratic programming problem can be
solved efficiently, see [Fletcher 1990; Vanderbei 2004].
As an example, Figure 2 shows a cubic rational Bézier
curve which has been generated by interpolating 5 points.
This is one point more than the usual polynomial inter-
polation would be able to deal with. In this case, the in-
terpolation conditions form a system of 10 homogeneous
equations for 12 unknowns. The remaining two degrees
of freedom are determined by minimizing (3).

As a certain disadvantage of this approach, the existence
of solutions cannot be guaranteed a priori for k � d, since
it also depends on the location of the data. Only if k 	 d
holds, the problem reduces to the usual polynomial in-
terpolation problems (where all weights equal 1), and
the existence and uniqueness of solutions can be guar-
anteed by checking the Schoenberg–Whitney conditions
B � ti ��� 0.

According to the experiences with this method and its
predecessors [Schneider 1992], it is possible to actually
use the weights of the rational curves, but one has to be
very careful to restrict them to a reasonable interval. Oth-
erwise, the curve may exhibit a very non–uniform para-
metric speed distribution, or it may even have points at
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Figure 2: Interpolation of 4 points with equidistant pa-
rameters by a rational cubic Bézier curve. The weights
of the control points are shown.

infinity.

Remark. In many cases, it suffices to minimize (3) with-
out taking the linear inequalities into account. After-
wards one may check whether the weights are positive,
and additional degrees of freedom can be introduced as
needed.

3 Approximate parameterization

We consider the problem of parameterizing an algebraic
curve. Note that the results presented here can be gener-
alized to any implicitly defined curves.

3.1 Outline

Consider a bivariate polynomial f 	 f � p � of degree m.
Let �

	 � p � � 2 : f � p �
	 0 � (4)

be the algebraic curve which is defined by this polyno-
mial. We are interested in a regular arc of

�
connecting

two points a0 � a1 �
�

. We construct a (possibly piece-
wise) rational parametric curve of degree n

c̄ � t � 	 � x � t ��� y � t ��� w � t � � for t ��� 0 � 1 � (5)

which interpolates the points a0, a1 and the tangents at
these points. In addition, the curve is to approximate the
algebraic curve

�
with a certain accuracy along the arc.

The method consists of the following steps:

1. We generate a suitable initial solution. This is done
by using simple cubic Hermite interpolation for a
small segment.

2. Using nonlinear optimization, we generate a highly
accurate rational approximation to the arc of the al-
gebraic curve.

3. The segment is extrapolated, in order to find a new
initial solution for a bigger segment.

4. Steps 2 and 3 are repeated, until the segment can no
longer be extended (this decision is governed by the
maximum deviation).

5. If the extension in Step 4 fails, we start a new seg-
ment, which is attached to the previous one with G1

continuity.

By using this region–growing type approach, we can al-
ways be sure to have a sensible initial solution for the
next non–linear iteration.

Each segment of the approximating curve is described
in Bernstein-Bézier form, with the homogeneous coordi-
nates

c̄ � t � 	 n

∑
i � 0

Bn
i � t � � bi � bn � 1 � i � b2n � 2 � i � � (6)

The vector b 	 � b0 ������� � bdn
� of control values with dn 	

3n
	

2 represents our curve as a point in � dn � 1 space.
The vectors

pi 	 � bi � bn � 1 � i � b2n � 2 � i � (7)

are the homogeneous control points of the rational Bézier
curve c � t � for i 	 0 ��������� n.

In order to obtain the Cartesian coordinates, we apply a
projection of c̄ � t � to the plane w 	 1,

c � t � 	
�

x � t �
w � t � �

y � t �
w � t ��� for t ��� 0 � 1 � � (8)

As a well–known fact, rational Bézier curves admit bi-
linear parameter transformations, which lead to a one–
parameter family of equivalent representations. This
leads to the so–called standard form, where the bound-
ary weights b2n � 2 and b3n � 2 are both equal to one.
See [Hoschek and Lasser 1993] for more information.
Throughout this paper, we consider rational curves in
standard form.

3.2 Parameterizing a segment

We generate a rational curve segment c which approxi-
mates the algebraic curve,

f � c � t � �
	 0 for t ��� 0 � 1 � (9)



and satisfies the boundary conditions

c � 0 � 	 a0 (10)

c � 1 � 	 a1 (11)

∇ f � a0 ��� ċ � 0 � 	 0 (12)

∇ f � a1 ��� ċ � 1 � 	 0 � (13)

In order to satisfy the G1 boundary conditions, we define
suitable unit tangent vectors

�
v0 and

�
v1 at the end points,

see Figure 3.
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Figure 3: Parameterizing a segment.

We use optimization techniques in order to find the solu-
tion. If no initial solution is known, then we start with a
cubic Hermite segment interpolating the given endpoint
conditions. In case n � 3, degree raising is needed in
order to get the higher degree initial curve.

The solution is computed by minimizing the objective
function F � b � subject to G1 boundary conditions,

F � b � 	 F1 � b � 	 wweightF2 � b � 	 wcpF3 � b ��� (14)

with

F1 � b � 	
 1

0

f � c � t � � 2!
∇ f � c � t � � ! 2 dt � (15)

F2 � b � 	
 1

0
� w � t � 
 1 � 8dt (16)

F3 � b � 	 n � 1

∑
i � 0

!
pi � 1 
 pi

! 2 � (17)

where the weights wweight, wcp satisfy

0 � wcp � � wweight �� 1 � (18)

The term F1 is responsible for minimizing the distance of
the curve (8) from the curve

�
.

If the lengths of the gradients of f do not vary too much
in the vicinity of the curve, one may use the simpler ob-
jective function

F "1 � b � 	
 1

0
f̄ � c̄ � t � � 2dt � (19)

instead of F1, where f̄ is the homogenized version of
the polynomial f � x � y � describing the given curve, and c̄
are the homogeneous coordinates. As an advantage, this
leads to integrals of polynomials, which can be evaluated
exactly (e.g., by using Gaussian quadrature). Similarly,
all derivatives needed for the numerical optimization can
then be evaluated exactly.

As another, more sophisticated, objective func-
tion, one could integrate the distance error estimate
� f � c � t � � 2 �$# � ! ∇ f � c � t � � ! 2 � over the arc length of the
curve.

The term F2 penalizes the deviation of the weights of the
rational curve (i.e., of the denominator) from one, mak-
ing the curve as close to a polynomial one as possible.
Clearly, the eighth power could be replaced with any
even number. According to our numerical experience,
the eighth power produces a reasonable weight distribu-
tion. The last term F3 serves to regularize the solution.

Since F1 and F2 are non-linear, we use an SQP-type
method to compute a stationary point of the objective
function.

Let b be the vector of control points for the curve to be
optimized. We compute

∂F � b �
∂bi

and
∂ 2F � b �
∂bi∂b j

(20)

for i � j 	 0 ��������� dn. Using the auxiliary vectors
�
v0 �
�
v1, the

boundary can be rewritten as

p0 	 a0 (21)

p1 	 b2n � 3p0
	

k0
1
n
� �v0 � 0 � (22)

and

pn 	 a1 (23)

pn � 1 	 b3n � 2pn 
 k1
1
n
� �v1 � 0 � � (24)

Hence, we will optimize with respect to the parameters

b2 ��������� bn � 2 � bn � 3 ������� � b2n � 1 � b2n � 3 ������� � b3n � 1 � k0 � k1
(25)

Since (21), (22), (23) and (24) represent a linear change
of coordinates, we can calculate the gradient of F and the
matrix of second order derivatives with respect to vari-
ables (25) easily from (20). More precisely, consider the
vector r of the new variables (25). Then, let

r 	 Ab (26)

be a linear change of coordinates given by the matrix A
of type � 3n 
 1 �&% � 3n

	
3 � . Then

∇rF 	 A∇bF (27)



and
∇2

rF 	 A∇2
bFA � (28)

If the curve r does not represent a stationary point of the
functional F , we calculate the vector for correcting the
current values from

�
q 	 � ∇2

rF � � 1∇Fr � (29)

In order to make the algorithm more stable, we use a sim-
ple bisection procedure to adjust the stepsize. More pre-
cisely, according to the sign of the directional derivative
∇rF � �q, we compute the new point r " by bisection be-
tween points

r and r 
 sgn � ∇rF � �q � �q � (30)

We stop the bisection if F � r " � � F � r � holds. This pro-
duces a sequence of curves satisfying

F � bi � 1 � � F � bi � (31)

If r " has been found, we get b " via (26).

Starting with b0 representing a Hermite interpolant of the
boundary conditions, the iteration step generates a se-
quence of curves

�
bi � ∞

i � 0 with bi � 1 	 � bi � " � (32)

If the initial value b0 is within an appropriate neighbor-
hood of a local minimum, then the sequence is known to
converge towards this minimum.

Remark. In practice, the adjustment of the stepsize
should also take the condition k "0 � k "1 � 0 into account,
which is introduced in order to preserve the direction of
the derivatives at the endpoints.

3.3 Extending the segment

After generating a curve segment, we extrapolate this
along the algebraic curve

�
, in order to get the initial

value for the next step. Since all operations are in a
neighborhood of the endpoint of the curve segment, we
will calculate with corresponding Euclidean coordinates
of the control points pi. The algorithm works as follows:

1. Let ε � 0. Calculate the control points of the curve c̄
on interval � 0 � 1 	 ε � . This can be done via de Castel-
jau algorithm. Let p̃i for i 	 0 ������� � n be the control
points of the extended Bézier curve.

2. Project the endpoint p̃n of the extension on the curve�
, see Figure 4. Let p " be the result of the projec-

tion and calculate the new tangent at this endpoint
of the segment as

t : ∇ f � p " ��� � x 
 p " � 	 0 � (33)

Hence, the new endpoint is shifted to

a "1 	 p " (34)

In order to satisfy the G1 endpoint conditions, we
project also the tangent vector k1

�
v1 to the endpoint

tangent t of the new segment. We get a new tangent
vector k "1 �v "1, where we suppose

�
v "1 to be a unit vector.

Its orientation is discussed later.

3. We reparameterize the new curve segment so that
the weights on the endpoints are equal to 1.0 and
the new segment is again parameterized over the in-
terval � 0 � 1 � (conversion to standard form).

����
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Figure 4: Extending a segment

The extension parameter ε is chosen as follows: we start
with ε 	 ε0 (in our examples ε0 	 0 � 5). We apply bisec-
tion until the following conditions are satisfied:

� The projection p " of p̃n to
�

exists and
!
p " 
 p̃n

!
� maxpd (35)

� The endpoint tangent direction satisfies
�
v "1 � �v1 � max cos and k "1 � 0 (36)

� If b represents the initial curve and b̃ represents an
extension of the initial curve, we require

F � b̃ � � maxOF and F � b̃ ��� cmaxF � b � (37)

for some positive coefficients with cmax � 1 � 0.

Clearly, this procedure involves some user–defined con-
stants, which have to be chosen carefully.

If the conditions (35), (36) and (37) are satisfied for rea-
sonable extension ε parameter, we use again the opti-
mization procedure from the previous section, in order
to approximate the given algebraic curve.



Repeating these steps, we can considerably extend the
first optimized curve segment in one or both parameter
directions.

3.4 Applications and Examples

A first example of the algorithm for approximate parame-
terization is shown in Figure 5. We started with the cubic
initial segment in (a). The control polygon is drawn as a
thick line. The weights of all control points are equal to
1.0, as can be seen in the figure. After the optimization
we got the segment on the part (b) and the weights of the
middle points decreased to 0.86 and 0.84. Note that these
figure (and all other ones) show the algebraic curve, the
rational Bézier curve (for a segment larger than the do-
main � 0 � 1 � ) and its control polygon. The first feasible
extension is shown in (c), and (d) visualizes the situa-
tion after the projection of the endpoint and its tangent
vector to the curve

�
. The new segment was again op-

timized (e), and another extension is shown in (f). As
demonstrated by this example, the method is able to au-
tomatically adjust the weights of the control points.

In the second example (Figure 6), we applied the method
to parameterizing a circle. Since the circle is a rational
curve, our approach is expected to give an almost exact
solution in the limit. Clearly, if the terms F2 and F3 and
used in the objective function, then the algorithm will not
be able to reproduce the circle. Still, it produces a highly
accurate approximation to it.

As a third example (see Figure 7), we have applied
the method to an algebraic curve with a singular point.
As demonstrated by this example, it is possible to pass
through the singular point and continue along the branch
of after the singularity. However, a more thorough anal-
ysis of the convergence in this case is still needed.

As an application, we apply this methods to the interpo-
lation problem. Consider 9 points Let p1 ��������� p9 � � 2 in
the plane. These points can be interpolated by a cubic
algebraic curve f 	 0, where

f � x � y � 	 ∑
i � j � k � 3

B3
i jk � x � y � 1 
 x 
 y � bi jk � (38)

More precisely, the system of equations

f � pi � 	 0 for i 	 1 ��������� 9 (39)

has – in the generic case – a unique solution (up to a
constant factors). Using our approximate parameteriza-
tion technique, we can get the parameterization of the ap-
proximation. The resulting implicit curve can then be ap-
proximately parameterized. This method has been used
to generate the curve shown in Figure 8.

On the one hand, this method can be seen as a pos-
sible approach to bypass the parameterization problem

for curve fitting (and similarly for surfaces). On the
other hand, the algebraic fit has to be carefully exam-
ined; for instance, the given points may end up on dif-
ferent branches of the algebraic curve, or the curve may
exhibit unwanted singularities. This problem can be re-
solved by using techniques such as the one described in
[Jüttler and Wurm 2003], which produce algebraic spline
curves approximating both a sequence of points and as-
sociated gradient information.

4 Conclusions

We have presented a method for approximate parameteri-
zation of an implicitly defined curve. The method, which
is based on non–linear optimization, produces a piece-
wise rational Bézier curve. Currently, our implementa-
tion leads to G1 curves, but the generalization to higher
orders of differentiability is possible. As the main new
feature, the method is able to adjust the weights of the
control points, in order to obtain the best possible result.
Future research will concentrate on applications, e.g., for
tracing surface/surface–intersections, and on the general-
ization to the case of surfaces.
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Figure 5: Parameterizing a cubic algebraic curve: (a) initial cubic Hermite curve; (b) optimized segment; (c) extrapo-
lated segment; (d) endpoint projected to the implicit curve; (e) optimization of the extended segment; (f) next extension.
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Figure 6: Parameterizing a circle: (a) initial cubic Hermite curve; (b–f) several steps of the curve extension.
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Figure 7: Example of parameterization of implicitized cubic curve with s a singular point: (a) initial cubic Hermite
curve; (b)-(f) several steps of the extension.
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Figure 8: Parameterization of non–rational curve. (b) cubic algebraic curve which interpolates the 9 points in (a); (c)
cubic Hermite curve, (d)-(f) several steps of the extension
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