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Abstract. This paper considers the problem of approximating a
given segment of an algebraic cubic curve by a cubic rational curve sat-

isfying G boundary conditions. According to the classical non-linear
approximation theory of Meinardus and Schwedt [2,6], the existence
and uniqueness of solutions is guaranteed if the deviation functions
satisfy both the local and the global Haar property. We show that
the local Haar property is satisfied and give a counterexample for the
global one. In addition, we describe a Remes-type algorithm for com-
puting a solution.

§1. Introduction

In order to switch from the implicit form of a planar algebraic curve to a
rational parametric representation, one has to solve the parameterization
problem. According to the classical results from algebraic geometry, exact
rational parameterizations are available only for algebraic curves of genus
zero. Consequently, the existing symbolic techniques for parameterization
are useful only for a relatively small subclass of these curves. Besides,
they will almost always fail if the coefficients of the algebraic curves are
given in floating point form. In applications in geometric design, however,
one is often interested only in a small segment of the algebraic curve,
and not in the curve as a whole. Therefore, an algorithm for approximate
parameterization of algebraic curve segments is needed.

This paper discusses the rational cubic case with G! boundary condi-
tions. We consider an algebraic cubic curve segment in Bernstein—Bézier
representation [7]

f(u,v,w) = E Bi,j,k(u’7vaw) bi,j,ka (1)
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with certain coefficients b; ; , € IR, where B; ; ; are the bivariate Bernstein
polynomials and wu,v,w the barycentric coordinates with respect to an
associated domain triangle A with vertices A, B,C € R?. Throughout
this paper we assume that the algebraic cubic curve segment

F={(z,y) € AABC| f(z,y) = 0}

is a regular curve segment with end points A and C. In addition, the
edges AB and BC are assumed to be tangent to the curve segment. As a
necessary (but not sufficient) condition, the coefficients satisfy

bo,0,3=bo,1,2 ="b21,0=030,0=0. (2)
Under these assumptions, there exists a (not necessarily rational) C? pa-
rameterization x : [a,b] — R? of F. We denote with n(t) the normal
vector and with x(t) the curvature at x(¢). Clearly, this representation is
generally non-rational. We are interested in generating an approximate
cubic rational parametric representation, which also preserves boundary
points and boundary tangents.

In this paper we formulate this task as a rational approximation prob-
lem; the approximate parameterization is to be found by minimizing the
distance between the original curve and the parametric one. For the con-
venience of the reader, we summarize some basic notions which were in-
troduced by Degen [2]:

A curve G which is given by a C! parametric representation y :
[c,d] — R?, is called admissible with respect to x : [a,b] — IR?, if the
following conditions are satisfied:

(1) For each s € [c, d] exist real values t € [a, b] and p, such that
y(s) =x(t) + pn(t) where pr(t) <1 (3)

(i¢) For each t € [a, b] there is exactly one s = o (t) € [c, d] satisfying (3).
(7i7) The tangent vector y(o(t)) is linearly independent of n(t).
(iv) The segment end points of both curves F and G are identical, i.e.

x(a) = y(¢),x(b) = y(d).
Each admissible curve has an associated reparameterization

o:la,b] = [c,d], t+— o)

(cf. (7)), and an associated deviation function p : [a,b] = IR such that

yoo=x+pn or,equivalently, y(o(t)) =x(t)+ p(t) n(t). (4)
Finally, the maximum absolute value of the deviation function

dn(F,G) := Jnax, p(1)]

is called the normal distance of G from F.
Using these notations we formulate the following rational approxima-
tion problem (RAP), see Fig. 1:
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Problem 1. Given a domain triangle AABC and a a single arc of a
cubic curve satisfying G' boundary conditions, find an admissible cubic
rational Bézier curve

y: [0,1]—)]R2, s y(s)

interpolating both the boundary points and the associated tangents, which
minimizes the normal distance of G from F.
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Fig. 1. Rational approximation with  Fig. 2. Geometrical meaning of A
G' boundary conditions. and p.

Using the the nonlinear approximation theory of Meinardus and Schwedt
[6], the analogous problem for polynomial curves of arbitrary degree has
thoroughly been discussed by Degen [2] and Eisele [3]. As observed there,
polynomial Bézier curves satisfy the so—called local Haar property. The
global Haar property is satisfied for quadratic polynomial Bézier curves and
for cubic polynomial Bézier curves with G' boundary conditions. More-
over, it has been shown that the global Haar property for polynomial
Bézier curves is satisfied for arbitrary degree and G* boundary condi-
tions, but only in some vicinity of a given curve [3]. Consequently, in the
polynomial case, the approximation problem has a locally unique solution,
which can then be computed by a Remes—type algorithm (see [2, 8]).

§2. Existence and uniqueness of a best approximation

The cubic rational curves which satisfy the G' Hermite boundary condi-
tion have the Bézier representation

X(S) Y(S) )T (5)

with

X(S) = —83 w —828 —
(Y(s)>_(1 PP A+3w (1-35)°s(AB+(1—A)A) ©

+ 3wy (1—s)s? (uB+ (1 —p)C)+s*°C
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and
W(s)=(1—-5)°+3wy (1 —5)°s+3wy(1—s)s?+s°. (7)

Here, we use the so—called standard representation (wy = ws = 1), which
can be obtained using a suitable bilinear parameter transformation, see [4].
Hence for given boundary values, the set R of cubic rational Bézier curves
satisfying the G boundary conditions depends on the four parameters A,
i, wy and wy. This defines a bijective mapping

A:R* >R (O p,wy,ws) — y(.). (8)

Let m be the number of free parameters (in our case, m = 4). The
mapping (8) induces a differentiable structure on the set R. Now, taking
the admissibility conditions into account, we denote — for a given curve F
— the set of all admissible curves by R'. It is the image of an open subset
M C R* under the mapping A. A proof for this fact is given in [2] for
the polynomial case. Since the proof does not use any special features of
polynomial curves, it can be adapted to the rational situation.

If we consider only the admissible curves in R, then both the differ-
entiable structure and the dimension m are maintained. The differential
structure can be described by the mapping

AI = A|M

Now we consider the reparameterization and deviation functions o, p in (4)
not only for a single curve G, but for all admissible curves in R’. Using
the implicit function theorem we obtain differentiable functions

p,0: M x[a,b] = R,
such that the specializations

t— pp(t) = p(p,t) resp. t— op(t) =6(p,t)

to a specific p = (\, g, w1, w2) € M are the deviation and reparameteri-
zation functions of the rational Bézier curve A’'(p) € R'.

We also define a map I'" which assigns the deviation function of the
corresponding admissible curve to each point in the parameter domain,

' M—cC[0,1], pr~ pp

According to [2], the set M =T'(M) is a differentiable manifold.

The theory of Meinardus and Schwedt (see [1,6]) is concerned exactly
with this situation: given p : M x [a,b] — IR as above and f € CJa, b,
find pg € M such that

1A(po, ) — fll = nf llo(p,.) = fII
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The function p(po,.) is called best approximation to f with respect to the
parameter domain M. In our case, f = 0. For the convenience of the
reader, we summarize some notions and results from this theory (see [2]
for more details):

(1) The function p(po,.) of M is called local best approximation to f, if
there exists an open subset U C M with py € U such that p(po,.)
is a best approximation to f with respect to the parameter domain
MNU.

(2) The elements of the linear tangent space T, M of M at I'(p) can be
represented by linear combinations of the m partial derivatives of I'
(in our case with respect to A, u, wi, ws), evaluated at p:

or or or or
T = s { S20), S50, 2 (0), ()

(3) M is said to satisfy the local Haar property at p, if the linear tangent
space Tp M satisfies the classical Haar property, i.e. if each function
T € TpM, T # 0, has at most m — 1 zeros.

(4) M is said to satisfy the global Haar property, if pp — pq has at most
m — 1 zeros for every pair p,q € M.

(5) A continuous function r : [a,b] — IR is said to be an alternant with
m + 1 extremal points, iff there are m + 1 points

a<z1<...<Zpms1 < b,

such that |r(z;)| = ||7]|eo for i =1,...,m + 1 and r(x;) = —r(zi+1)
fore=1,...,m.

Using these notions, the following results can be formulated.

Theorem 2 (Meinardus and Schwedt, [6]). Let f € Cla,b] and M
be induced by a global differentiable function p : M x [a,b] — R (as above)
and satisfy the global Haar property. If there is a p € M such that the
local Haar property is satisfied at p and pp — f is an alternant with m+1
extremal points, then py is the unique best approximation to f.

If M does not satisfy the global Haar property, we can formulate a nec-
cessary condition for a local best approximation (see [1]):

Remark 3. Let f € Cla,b] and M be induced by a global differentiable
function p : M x [a,b] — R. If p(po,.) is a local best approximation to f,
then pg is an alternant with m + 1 extremal points.

Note that in our case m = 4. From the G'! boundary conditions, every pyp,
has two—fold zeros at 0 and 1. These zeros must not be counted, neither
in the local Haar property nor in the global one (see [2], Remark after
Definition 4).
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§3. Local Haar condition
Now we are ready to apply this theory to our special situation.

Theorem 4. The differential manifold M above satisfies the local Haar
property.

Proof: Consider an arbitrary point p = (X, g, w1, ws) € M C R*, along
with the associated rational Bézier curve y = A'(p) € R. Let 7 € T, M
be an arbitrary function from the linear tangent space of M at a point

p(p,.) € M. We have to show that 7 = 7(¢) has at most 3 zeros in |0, 1].
This function can be written as

7(t) = (Dvp)(p, 1),

for some direction v in the parameter space R*, where D, is the directional
derivative. In order to estimate the number of zeros of 7(t) we use a
technique due to Degen (see [2]). Since y depends on p, yp(t) = y(p, 1),
we may rewrite (4) as

yp(op(t) =x(t) + pp(t) n(t) (9)
—~—
= p(p,1)

Applying the directional derivative D, and using the chain rule yields

(Dvy)(p;op(t) +yp(op(t) (Dv6)(p,t) = (Dvp)(p,t) n(t).  (10)
=7(t)

Using the abbreviation [u,v] = ujve — ugvy for the determinant of two
vectors, we get by multiplying both sides with the tangent vector y;,

[(Dvy) (P, 0p(1); ¥p(ap(t))] = 7(t) n(t), yp(0p(1))]. (11)

-~

(*)

Due to the admissibility assumption (7i7), the determinant () has no zeros
in ]a,b[. Consequently, the zeros of 7 are the same as those of the left—
hand side in (11). The parameter transformation ¢ — s(¢) = 6(p,t) can
be omitted, since it is a diffeomorphism. Consequently, the numbers of
zeros of 7(t) in ]a, b[ and of

T(s) == [(Dvy)(p; 5),yp(s)] in]0,1]

are equal.
Computationally, T'(s) is a rational expression in the variables s, A, y,
w1, We, in the coordinates vy, va, v3, v4 of the direction v, and in a1, as, by,
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ba, c1,c2 (the coordinates of A, B, C). We calculated this expression ex-
plicitly with Maple and factorized it. It turned out that

18 ¢ s%2(1 — 5)? q(s
rig = et
where c is the oriented area of the triangle AABC and
a(s) = (A (1 = p) (w1vs — 2wavs) — wrwa (2 (1 — p) v1 + va)) (1 — s)°
+ (w1 (=3wiws (1 — p) — 1) vy — v3A — 2w22v2) (1- s)2 s
+ (—2 V1w — wo (Bwiws (1 —A) + 1) vy — ,uv4) (1—35) 52
+ (1 (1 = X) (wavs — 2wqv4) — wiwg (vip+2 (1 — A)wvy)) 83

is a cubic polynomial in s. Since the points A, B and C are assumed to
be non—collinear, we have ¢ # 0 and therefore T'(s) and 7(t) have at most
3 zeros in |0, 1[ resp. in Ja,b[. O

§4. Global Haar condition

If M satisfied the global Haar property (for some given curve F), there
would not exist any two deviation functions pp and pq such that pp — pq
has 4 zeros. Clearly, these zeros correspond to the intersection points of
A'(p) and A’(q). Therefore, any two admissible curves A’(p) and A’(q)
would not intersect in more than three points.

Unfortunately, as demonstrated by the following example, this as-
sumption is not satisfied by rational Bézier cubics.

Example. Let the A := (1,0),B := (0,1),C := (0,0) and

_ ._ (52881 18807 20373 82381
P = (A1, 41, w1,1,w1,2) *= (150000 250007 250007 100000

_ . (11233 33023 98521 24947
q = (A2, p2, w2,1,w2,2) *= (35500 50000 100000 25000)-

Using (5)—(7) we obtain two cubic rational Bézier curves yp(s) = A'(p)
and yq(t) = A’(q), which satisfy G* boundary conditions. Both curves
are also admissible with respect to a suitable algebraic cubic (for instance,
this curve can be obtained by implicitizing y,). These curve segments
have — in addition to the end points — the four intersections

(0.667, 0.290), (0.412,0.431), (0.192,0.445), (0.038,0.273).

This can also be seen by inspecting the deviation function of y, with
respect to yp, see Fig. 3. In addition to this function, the figure shows
the curves yq and yq + cp(t)n(t) (i.e., second curve with exaggerated
distance).

According to a result of Eisele [3], the global Haar condition is locally
satisfied in the polynomial case, within a certain neighbourhood of a given
curve. So far, we did not succeed in generalizing this result to the rational
situation.
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§5. Remes-type algorithm

Unfortunately, the theorem of Meinardus and Schwedt is not applicable
to our problem (RAP), since M does not satisfy the global Haar property.
Nevertheless, for practical purposes it is useful to compute an alternating
approximation, but one cannot guarantee that it is the best solution of
the RAP. The ideas of Remes’ algorithm can be generalized in order to
construct an alternating approximating curve. More details will be given
in the forthcoming paper [5]. Here we will give an outline of our approach.

Note that it is not convenient to use the rational Bézier representation
for the approximating curves y(s). Using this parametric representation,
one would have to solve systems of polynomial equations, and the choice
of a suitable initial solution may cause serious problems. We bypass these
problems by resorting to the the so—called Bézier coefficient space. Every
cubic algebraic curve can be identified by its bivariate Bézier coefficients
(see equation (1)). Clearly, this is a homogeneous representation, since
multiplying all bivariate Bézier coefficients with the constant does not
change the curve. Thus, in the case of G! boundary conditions, the curve
can be identified with the point

(B(),Q . B(),g . Bl’() H B1’1 H BLQ : Bz,()) € ]P5

from a 5—dimensional real projective space.

Next we derive an algebraic condition for the rationality of a cubic
curve. In the case of G! boundary conditions, it is a homogeneous polyno-
mial of degree 8 in the Bézier coefficients, which is called the discriminant.
This polynomial defines a hypersurface D C IP°, which contains all points
which correspond to (irreducible) rational cubics. Using this geometric
approach it is now relatively simple to construct rational cubic curves
interpolating certain points, which is a basic step in the Remes—type algo-
rithm. In order to keep the equations simple, it is convenient to compute
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the iteration points in the Bézier coeflicient space and then to project the
results onto the discriminant D, in order to obtain rational curves. By
modifying the points on the algebraic curve, we are able to achieve the
desired alternating behaviour of the deviation function. This is demon-
strated by the following example.

Example. Consider the domain triangle A = (1,0), B = (3,1), C =
(0,0) and the and the algebraic curve

5 5 1 9
= °B Boso— — B °B Biso— — B
f(z,y) g D021 + Do,3,0 16 D102 + g DLt + D1,2,0 16 200

where B; ; = B j r(u, v, w) are the cubic bivariate Bernstein polynomials
with respect to the domain triangle.

Using the Remes-type algorithm we generate a 4 times alternating cu-
bic rational Bézier curve with respect to this given curve segment F. Fig. 4
(left) shows the normal deviations of g1,...g4 with respect to the given
curve segment F. Of course, the extremal values of the deviation func-
tions correspond to the normal distances. They decrease from .3458 103
to .901910~%. The alternating behaviour can clearly be seen.

§6. Concluding remarks

In this paper we have used the nonlinear approximation theory of Meinar-
dus and Schwedt to analyze the problem of generating an approximate
rational parametric representation of a given algebraic cubic curve. As
demonstrated in this paper, the situation is different from the polynomial
case, as the global Haar property is not satisfied by rational cubics with
G' boundary conditions. Thus, the assumptions which would guarantee
the uniqueness of the solutions are not satisfied.

We developed a Remes-type algorithm which produces solutions which
satisfy the necessary condition for optimality. This algorithm, which is
based on the implicit representation and rationality criteria, will be de-
scribed in more detail in a forthcoming paper [5]. The generalization of
our approach to the surface case is currently under consideration.
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