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Abstract. According to a recent result by Farouki (1997), the optimal bilinear parameter
transformation of an integral Bézier curve (which produces a rational parameterization
whose parametric speed is as uniform as possible) can be computed by solving a quadratic
equation. This note presents a simplified derivation of this result. In addition we outline
its generalization to rational curves.
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The article (Farouki, 1997) studies bilinear parameter transformations of integral Bézier
curves. After introducing an optimality criterion which measures the deviation from the
uniform speed parameterization, it is discussed how the optimal rational representation
(which is shown to be unique) of an integral Bézier curve can be found. The computation
of the optimal representation is reduced to finding the root of a quadratic equation. The
derivation of these results, however, involves some “meaty” calculations, and Footnote 5
even advises vegetarians to skip from some of the equations.

In this note we present a simplified approach to the above results. As remarked on page
161 of (Farouki, 1997), the existence of such an approach is suggested by the elementary
final form of the equation for the optimal parameterization variable.

Consider an integral Bézier curve
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of degree n with the control points p, € IR? and the well-known Bernstein polynomials
BI'(t) = (’:)tz(l — t)"*, see (Hoschek and Lasser, 1993). We choose a fixed parameter «,



0 < a < 1, and apply the bilinear parameter transformation
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u > to(u) = (2)
to the curve (1). The transformation maps the unit interval onto itself, in particular it
satisfies t4(0) = 0, t4(1) = 1 and t,(3) = 1—a. The inverse transformation of (2) evaluates
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Applying the transformation ¢, (u) to the curve (1) results in the rational Bézier curve
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with the new curve parameter u € [0,1] and with the weights w; = (1 — a)! a®". Let S
denote the total arc length of the curve,

§= [ %@t = [ 1L (o) (5)

Of course, the bilinear parameter transformation preserves the arc length of the curve.
As proposed by (Farouki, 1997), we want to choose the re—parameterization (2) (which is
governed by the parameter a) such that the value of
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becomes as small as possible. This expression measures the deviation of x(¢,(u)) from the
uniform—speed parameterization of the curve. As an immediate consequence from (5) and
(6), this is equivalent to finding the minimum of the function
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With the help of the chain rule we get from (7)
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By substituting u = u,(t) we transform the integration variable back to the original curve

parameter ¢,
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The derivative of the parameter transformation ¢,(u) can be expressed with the help of
the inverse parameter transformation u,(t),
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Now Eq. (3) gives the final result for J(«),
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We assume that the curve (1) is regular, i.e., &X(t) # 0 holds for ¢ € [0,1]. Thus, there

exist two constants C, Cy with

d
0<01<”Ex(t)”<02 for te]0,1]. (12)
Resulting from
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we obtain from (11) the inequalities
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Hence the problem J(a) — Min possesses a global minimum a = ag for 0 < a < 1.
Moreover, this solution satisfies the equation
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cf. (11). We express the numerator of the fraction in Bernstein—Bézier form,

0 = %J(a) — /01 _Bo(t) Ba()((z‘/l)—f_l;) () ( ) ||%X(t)”2 dt
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with the coefficients
P=[ B0 IEx0Pa wd Q= [ BOISx@Pa (9
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Note that P < 0 < @ holds, as the Bernstein polynomials are non-negative on the unit
interval. Hence, we get exactly one root of P B3 () + Q BZ(a) = 0 with 0 < a < 1.
Using the identities
d
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with Ap; = p;;; — P;

/ Bt dt = — (20)

0 n+1’
and the product formulas for Bernstein polynomials (see (Farouki and Rajan, 1988) or
(Hoschek and Lasser, 1993)) we compute the coefficients P and @,

nzlnzl (” 1) (” 1) Ap; - Apj and
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The parameter o = «p of the optimal parameter transformation (2) can now easily be
obtained as the unique root of the quadratic polynomial

0=PBja)+QB5(a)=P(1 —a)+Q o (22)

with 0 < a < 1.

Note that this approach can be generalized to the case of rational Bézier curves, cf. Sec-
tion 5 of (Farouki, 1997). The calculations from Eq. (6) till Eq. (18) are valid for rational
Bézier curves too. Hence, the parameter « of the optimal re-parameterization (2) of a ra-
tional Bézier curve is again the unique root of (22) with 0 < o < 1. Unlike the polynomial
case, the coefficients P and @ have to be found by integrating the rational (rather than
polynomial) expressions (18). In practice one should use numerical quadratures to evaluate
these coefficients, as the exact integration via partial-fraction decomposition seems to be
too expensive.
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