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Abstract

We present a general construction of linear sufficient convexity conditions for multivariate poly-
nomials in Bernstein—Bézier representation over simplices. As the main new feature of the con-
struction, the obtained conditions can be made as weak as desired; they can be adapted to any
finite set of strongly convex polynomials.

1. Introduction

Convexity criteria for multivariate polynomials in Bernstein-Bézier (BB) representation
over simplices have attracted a great deal of research during the last years, see e.g. the
surveys by Goodman [8] and Dahmen [4]. For bivariate polynomials it has been observed
by Chang and Davis [2] at first, that convexity of the control net (or, more precisely,
convexity of the piecewise linear interpolant to the Bézier coefficients) of a polynomial
implies convexity of the polynomial. This result was generalized to the multivariate case
by Dahmen and Micchelli [5]. Note that in the general multivariate case there is no unique
piecewise linear interpolant of the Bézier coefficients. This is due to the fact that for
dimension > 3 no canonical decomposition of a simplex into smaller simplices exists, see
e.g. Figure 3 in [5].

Of course, convexity of the control net is far from being a necessary condition for
convexity of the bivariate polynomial. In order to find weaker criteria, several authors
investigated the effects of (artificial) degree raising [5, 14] and subdivision [6, 9, 10, 11]
of the BB representation. As shown by Gregory and Zhou [11], subdivision preserves the
convexity of the control net if and only if one uses regular partitions of the original domain
triangle (the edges of the sub-triangles have to be parallel to the ones of the original domain
triangle). However, it is easy to find bivariate polynomials where both degree elevation
and regular subdivision of the original domain triangle fail to produce a convex control
net. In the very special case of quadratic bivariate polynomials it has been observed by
Prautzsch [15], that it is always possible to subdivide the original domain triangle so that



the control net gets convex. The suitable (non-regular) partition of the domain triangle,
however, depends on the given quadratic polynomial.

Consequently, convexity of the control net is a relatively strong convexity criterion. It
will be shown later that it applies to only & 50% of the convex bivariate polynomials. By
using quadratic convexity conditions (i.e., quadratic inequalities of the BB coefficients) it
is possible to avoid these difficulties in the bivariate case, see e.g. [3, 6, 17]. However, it
is much easier to use linear conditions in the context of surface construction; many tasks
can then be formulated as optimization problems with linear constraints. Moreover, the
generalization of the quadratic conditions to higher dimensions seems to be difficult.

Weaker linear conditions were developed by Lai [13], He [12] and recently by Carnicer,
Floater and Pefia [1]. The present article derives a general construction which leads to linear
sufficient convexity conditions for multivariate polynomials. As the main new feature of the
construction, the obtained conditions can be made as weak as desired, simply by increasing
the number of inequalities. More precisely, it is possible to adapt the convexity conditions
to any finite set of strongly convex polynomials. The results of Chang and Davis [2], Lai
[13] and Carnicer et al. [1] appear as special cases.

2. Preliminaries

At first we introduce some notions concerning multivariate polynomials in Bernstein—Bézier
representation over simplices, their blossoms, and their subdivision with respect to sub—
simplices.

2.1. Bernstein—Bézier representation

In the sequel we will examine some convexity conditions for a multivariate polynomial
p: R =R z+ p(z) with 2= (z1,...,7,)", of total degree d. Let a basis s—simplex

v = hull(v, . . ., vs) (1)

with the s + 1 affinely independent corners vp,...,v; € R® be given. We denote with
A =A(v,z) = (Mo,---, )" the barycentric coordinates of a point z € R® with respect to

1=0 1=0

Adopting standard multi-index notations we write

v,

1Bl=Bo+...+Bs, B'=05"...0 and AP =)0 . )\ (3)



for 8= (Bo,...,Bs) € Z5" (Z+ = {0,1,2,3,...}). The Bernstein polynomials of degree d
(with respect to the simplex v) are then given by

Bi(A) = EAﬂ with 8 € Z5, |B] = d. (4)
As the Bernstein polynomials form a basis of all multivariate polynomials of maximal
degree d, the given polynomial p(z) has a unique Bernstein—Bézier (BB) representation
with respect to the simplex v,

p@)= Y bs(p,v) B(A(r,9)). (5)

,BEZS-H-,‘/B':d

The coefficients bg(p,v) € R are the BB coefficients of the polynomial p with respect to
the basis simplex v.

2.2. Multivariate blossoms

Suppose one wants to generate the BB representation of p(z) with respect to another basis
simplex

w = hull(wy, . . ., wy) (6)

with the s+ 1 affinely independent corners wy, ..., ws € R®. The most compact description
of the corresponding transformation of the coefficients bz(p, .) can be derived with the help
of the blossom of the polynomial p. Before doing so we formulate some notions from [16]
for the s—dimensional setting.

Take d copies z; of the argument z € R® of the polynomial p, which correspond to d
copies of the barycentric coordinates A; = (Aig,...,Nis)', 2 = 1,...,d. Let Aﬁk be the
k—th factor of the product Af ,

Azﬂ\k )\i,j<:>ﬁ0+...+ﬁj71<k§ﬁo+...+ﬁj. (7)

The blossom of a multivariate Bernstein polynomial Bg(A) may be defined by

Bloss (A1, . .., Ag) =5 Z H Aﬂ (8)

welld =1

where TI¢ is the set of all permutations = of (1,...,d). For instance, the blossom of

B3 y1(A) = gramiA’ Mi® Aot evaluates to

0|2|1|

BIOSSS,QJ(AD Ao, A3) = (M1 221032 + AiAzi Ao + A2 A1 As0

21431 1,2 + Az A 11 A2,2 + A31 00,11 2).

2' 1!

(9)



The blossom (also called the polar form) of the polynomial p is then obtained as the linear
combination of the blossoms of the Bernstein polynomials,

Bloss p(z1,...,2a) = Y bs(p,v) Blossh(Ay, ..., Ag) (10)
pezst,|Bl=d

with A; = A(v, z;). It has (among others) the following properties (see [16]):
e It is a multi-affine mapping, i.e., linear in each of its d arguments,

Bloss p(...,rz; +svy;,...) =rBloss p(...,z;,...) + sBloss p(- .., y;,---)-

e [t is symmetric with respect to arbitrary permutations of its arguments,
Bloss p(21, - - ., 74) = Bloss p(Zx(1), - - -, Tr(a))
for all permutations 7w € II¢.
e Restricting the blossom to the diagonal reproduces the polynomial p,

p(z) = Bloss p(z, ..., z).

e The blossom of p(z) is unique, it does not depend on the choice of basis simplex v.

With the help of the blossom we can compute the coefficients of the polynomial p(z) with
respect to the new basis simplex w. The BB form of the polynomial p with respect to that
simplex is given by

p@)= Y bs(p,w) Bi(A(w,2)) (11)

pez,|Bl=d
with the coeflicients
b (p,w) = Bloss p(wy, - . ., Wo, Wi, ..., Wi, ... Wy, ., W) (12)
Bo ;irmes B1 ;irmes Bs ;irmes

The proof of this observation is a consequence of the multivariate version of the de Casteljau
algorithm. Figure 1 gives a schematic illustration of Eq. (12). The coefficient bg(p,w) is
attached to the point with barycentric coordinates 3/d in w.

The blossom of p depends continuously on its arguments, hence

lim  bs(p, w) = p(q). (13)

w;—q
(i=1,...,s)

Thus, if we restrict the polynomial p to simplices whose corners converge to a point g € R?,
then the coefficients of the BB representation converge to the value of p at this point q.



bo,0,2(p, w)
= Bloss p(w2, w2)

bo,1,1(p,w)
b1,0,1(p, w) = . = Bloss p(’wl, w2)

bo,2,0(p, w)
= Bloss p(wy, wy)

b2,0,0(p,w) = . wy

b1,1,0(p,w)
o = Bloss p(wo, wy)
Figure 1: Computing the BB coefficients of a polynomial (s = 2, d = 2) via

its blossom (scheme).

2.3. A triangulation of an s—simplex

For subdividing multivariate polynomials as described below we need to introduce a trian-
gulation of an s—simplex. We will use the same canonical triangulation as in [5, p. 273].
Consider a permutation m € I, and a corner point v € Z’,. Let oy be the simplex

Oymg = hull(v, vter(1), U+er(1)ten(2), - - -, Vter)ter2)+ ... +67r(5)) (14)

where ¢ is the k—th unit vector (0,...,0,1,0,...,0)" € R*. We construct a triangulation
(i.e., a decomposition into disjoint simplices) for the unit simplex A,(:) of size k in R?,

AP = hull(0, k ey, k etk ey, ..., ket ...+key). (15)
According to [5, p. 273] such a triangulation may be obtained from
TAY) ={ovr |veZ, 7 e, 00, CAY Y (16)

see Figure 2 for an illustration. The triangulation of an arbitrary simplex ¢ with the
refinement level £ is now obtained by an affine mapping which maps the corners of the
unit simplex A,(f) onto the corners of 0. Note that this mapping is not uniquely determined.
We denote by Ti(o) the triangulation of o which is obtained from one of these mappings
(without referring to the choice of the mapping).

Consider again the polynomial p in BB representation with respect to the simplex v.
Based on its blossom we may compute its BB representation with respect to any simplex
from 7, (v). We introduce the abbreviation

Bi(p,v) ={ bs(p,7) | B€ 2L, |B] =d, 7 € Ty(v) } (17)

for the set of coefficients which is obtained by collecting the resulting coefficients. All these
coefficients are certain constant affine combinations of the original coefficients bg(p, v).



Figure 2: Canonical split 75 of the simplex A?) (left) into 8
tetrahedrons (right).

Resulting from (13), for increasing refinement level k& — oo the coefficients from (17)
converge to values of the polynomial p on v. As a consequence one has:

Lemma 1. Consider a finite set of polynomials p;(z) in BB representation with respect to
the s—simplices v; CR® (i = 1,..., P), where p; is assumed to be strictly positive values for
z € v;. If the refinement level k is chosen big enough, then all coefficients Uf:l By (pi, vi) of
the BB representations with respect to the resulting sub-simplices T(vy) are nonnegative.

3. Conditionally non—negative definite matrices

Linear constraints that guarantee that the Hessian matrix of a function is non—negative
definite (or, more appropriate in the context of multivariate polynomials in BB represen-
tation, conditionally non-negative definite) are the essential ingredients for constructing
linear convexity conditions. We present a general construction for such constraints.

3.1. Construction of the constraints

Consider a symmetric real mxm-matrix A = (@;;)ij=1,.,m- This matrix is said to be
conditionally non-negative definite (also called conditionally positive semidefinite, see [5])
if the inequality

¢'Ac= iicl ¢jaij >0 (18)

i=1 j=1
holds for all vectors ¢ = (cy,...,¢,)" € R™ satisfying the side-condition
ci+c+...+¢,=0. (19)

Eq. (19) describes a hyperplane through the origin in R™. We seek for linear inequalities
of the components a; ; which imply this property of A. Such inequalities are obtained from
the following general construction:



We choose a convex m—I1-dimensional polyhedron which is contained within in the
hyperplane (19) of R™. It facets must be m—2-dimensional simplices, and it has to possess
the origin O as an interior point. We denote by 7, ry,..., ry the vertices (which are to
satisfy (19)!) and by r¢(r.0), Tf(r,1) - - - » Tf(r,m—2) the facets (r = 1,..., F)) of this polyhedron.

|
| Facets:
| —
o] — Ty {rra0) rran} = {r, r2}
7 fé =~ {7'f(2,0), Tf(2,1)} = {7"17 7"3}
/ ~
7
7

{7760 i} = {2, 13}

4]

Figure 3: A polyhedron within the hyperplane (19) for m = 3.

As an example, Figure 3 shows the situation for m = 3. The hyperplane (19) intersects
the cube with the corners (+1,+1,+1) in a regular hexagon. The polyhedron has been
chosen as a regular triangle within this hyperplane.

The expression

m—2
L) =" Airge with ye A" € R™2 and A = A(y, A7) (20)

i=0
is a linear parametric representation of the r—th facet with the parameter domain A&m*” C
R™ 2. By restricting the quadratic form (18) to this facet we get the quadratic polynomial

W) =L)AL = Y bslar, ATTY) BiA(y, AMT?)) (21)
BeLT,|8/=2

with the coefficients

bea;-l-ej (r, Agm_Q)) = TJI(M')A Tf(r.j) (4,5 =0,....,m—2), (22)
where e; is the i—th unit vector of Z™ . We chose a refinement level k¥ and consider the
inequalities

F
Ti(A) = | Bi(gr, AT ) > 0 (23)

r=1



with the abbreviation
{r,s,...,t} >0 & r>0,s>0,...,t>0. (24)

These inequalities depend linearly on the components (a; ;); j=1,..m of the matrix A, as the
BB coefficients (with respect to A™ ™) of the polynomials ¢,(y) are given by (22) and
increasing the refinement level k£ produces linear combinations of them.

Proposition 2. If the components (a; ;)i j=1,..m Satisfy the linear inequalities (23), then
the matriz A is conditionally nonnegative definite.

Proof. Consider an arbitrary point ¢ within the hyperplane (19) of R™. According to the
assumptions made about the polyhedron with the vertices ry, ..., ry, the line pc (1 € R)
intersects two of the facets of the polyhedron at least, thus

¢ = %fr(y) (25)

holds for certain r € {1,.,F}, y € A™? c R™"2 and pu € R\ {0}. Moreover, y is

contained in one simplex o € T5(A™ ) of the triangulation of A with refinement

level k. Hence,

1 1
TAe==fW)"ALW =—a) = D bslg.0) Bi(A(y0)) > 0. (26)
I m 5 AN
ﬂEZ_,’_ a|ﬂ|:2 (%) ()

The coefficients (*) are nonnegative as the corresponding inequalities are contained in the
set (23). The Bernstein polynomials (**) are nonnegative as well, due to y € o. Thus, the
inequality ¢" A ¢ > 0 is fulfilled. ]

Choosing different polyhedrons leads to different sets of inequalities. Two possible choices
will be discussed in more detail:

Example 1: Cross—polyhedron. The V = 2(m — 1) vertices r; € R™ of the polyhedron
in the hyperplane (19) are chosen as

7'1:_"'2:(1:0’0,"'50a_1 )T, 7’3:—714:(0,1,0,---;0,_]— )T’

27
cey T'V_1=—TV:(O,O,O,...,l,—l)T. ( )

The F = 2™~! facets of this polyhedron have lists of vertices from the set

{ (T‘f(,,-’o), T‘f(,,-’l), ceny ’r‘f(r,m_g)) | ’I‘=1, ceey F } = {1"1, 7‘2} X {7'3, 7‘4} X ... X {T‘V_l, Tv}. (28)

For instance, in the case m = 3, the polyhedron is the image of a square within the plane
xz3 = 0 under projection parallel to the z3—axis into the plane (19). Parameterizing the



facets and substituting them into the quadratic form leads to four quadratic polynomials.
Resulting from the central symmetry of the polyhedron, only two of them are different.
These polynomials are

q1/2(y) = (as3+a1,1—2as;) B%,O(A) (29)
+ (a31—ass+as2—as) Bil(A)'i‘ (a22+ass—2ass2) B§,2(A)
with parameter domain y € A{") ¢ R,

Similarly, in the case m = 4, the polyhedron is the image of an octahedron within the
hyperplane x, = 0 under parallel projection into the hyperplane (19). Parameterizing the
facets now leads to eight quadratic polynomials, but only four of them are different. They
may be obtained from

G12/3/4(y) = (agatar1—2a4,) B3 o(A)+81 (—04,1+a4,4+a2,1—a4 2) BY 1 (M)
+89 (—as1—as3+asa+az;) B 1 01 (M) + (agataza—2as9) B 0 20(A) 20
S3 (—a4,2—a4,3+a4’4+a3,2) 0 1, 1(A)+ (a3,3+a4’4—2 04,3) 0 0, 2(A) (30)

with (s1,s9,83) € {(1,1,1),(1,-1,-1), (1,1, —1), (=1, -1, 1)}

and they have the parameter domain y € A?) C R?. Based on their blossoms (which are
obtained by replacing the quadratic Bernstein polynomials with their blossoms) the linear
inequalities (23) can now easily be generated.

Resulting from the asymmetry of the polyhedron, the coefficients of the obtained
quadratic polynomials are not symmetric with respect to simultaneous permutations of
the lines and columns of the matrix (which keep its symmetry), and the obtained linear
inequalities are non—symmetric too. However, as a major advantage of this polyhedron, it
is easy to detect and to remove dependencies of the constraints. This is a more difficult
task for the second polyhedron:

Example 2: Regular simplex. The V = m vertices , € R™ of the simplex in the
hyperplane (19) are chosen as

rn=(m-1,-1,-1,...,-1)", n=(-1,m—1,-1,...,—-1)T,
: (31)
vy tm=(-1,-1,-1,...,m—1)".
The F' = m facets of this polyhedron have the lists of vertices
1 (rr00), Tr00)s s Tprme9) | =1, F } = (32)

{(r1y ey T2y T 1), (T1y ooy T2y T )y wovs (T2 ooy T 1, Tm)

they result by choosing all possible subsets of m — 1 vertices. For instance, in the case
m = 3, the simplex is a regular triangle within the plane (19), see Figure 3. Parameterizing
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the three facets and substituting them into the quadratic form leads to the three quadratic
polynomials

172/3(y) = cii B3 o (A)+cij By (A)+ej; BSo(A) (33)
with (4,7) € {(1,2),(1,3),(2,3)}, and with the coefficients

Crr = 4 a’r,'r_4 as,r_4 at,r+2 at,s+a5,s+at,ta
Cr,s = ) a's,'r_2 a'r,r_2 as,s+at,t_at,r_a't,sa

(34)

for (r,s,t) € II3. These polynomials have the parameter domain y € Agl) C R
Similarly, in the case m = 4, the simplex is a regular tetrahedron within the plane (19)
and we get the four quadratic polynomials

q1/2/3/4 (y) = Ci,iBg,o,o (A)"'Ci,jBiLo (A)

35
+ci,lB%,0,1(A)+Cj,ng,2,0(A)+Cj,lBg,1,1(A)+Cl,lBg,0,2(A)a (35)

(1,7,0) € {(1,2,3),(1,2,4),(1,3,4),(2, 3,4)}, with the coefficients
Cr,r =9 ar,r_6 a's,r_6 at,r_6 au,r+2 CLt,s'i'z au,s+2 au,t+as,s+at,t+au,u: (36)

Cr,s =20 01577«—6 a'r,r_6 as,s+4 a'u,t_4 a't,r_4 a't,s_4 a'u,r_4 au,s+2 at,t+2 au,ua

for (r,s,t,u) € II*. These polynomials have the parameter domain y € AgQ) C R2.

With the help of the blossoms, the linear inequalities (23) can now easily be generated.
Resulting from the symmetry of the polyhedron, the coefficients of the obtained quadratic
polynomials are symmetric with respect to permutations of the lines and columns of the
matrix. Hence, for m < 4 we obtain linear inequalities which are symmetric as well, as
also the triangulations 7y (o) of m—2-simplices (line segments or triangles) are symmetric.
However, this is no longer true for m > 4.

For constructing the polynomials ¢.(y) it would be sufficient to use a polyhedron which
covers half of the unit sphere only, but this would destroy the symmetry of the set of
polynomials ¢,(y) for m > 3. On the other hand, using a sphere-like polyhedron we
get conditions which contain dependencies, and for certain applications it may therefore
be necessary to detect and to eliminate the dependent constraints. For instance, such
dependencies can be found with the help of the simplex algorithm.

3.2. Asymptotic necessity

As the main new feature of the above construction, the linear constraints can be made as
weak as desired, by increasing the refinement level k.
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40

Proposition 3. Consider an arbitrary finite set AV = (a;")); j=1,.m of conditionally pos-

1,J
itive definite symmetric mxm-matrices (I =1,..., R), i.e.,
m m
cTA(l)c=ZZcicja§2->O (l=1,...,R) (37)
i=1 j=1

holds for all vectors ¢ = (co,...,cm)" # (0,0,...,0) which satisfy (19). If the refinement
level k 1is big enough, then the components of all matrices fulfill the linear inequalities
Ti(AD) > 0, of. (23).

Proof. Parameterizing the facets of the polyhedron with vertices ry, ..., ry and substi-
tuting them into the quadratic forms (37) leads to finitely many nonnegative polynomials
qy)(y), where the upper index refers to the matrix. These polynomials are even positive
for y € A{"‘Z, as all matrices were assumed to be conditionally positive definite. Hence,

it is possible to apply Lemma 1. If the refinement level k£ is big enough, then all Bézier

coefficients By, (qg), y € AT?) are nonnegative. Then, all matrices fulfill the inequalities

T,(AD) > 0. ]

oL

Figure 4: Geometric interpretation of Proposition 3 for m = 2.

This result can be interpreted in a geometric way, see Figure 4. The conditionally nonnega-
tive definite symmetric m xm-matrices form a convex cone C within an (™;")-dimensional
(due to the number of different components) linear space. The matrices which satisfy the
constraints (23) form another convex cone £ which is bounded by hyperplanes through
the origin. This cone is inscribed to C. The finitely many conditionally positive definite
matrices A®) span a third convex cone A which has no points on the boundary of C, except
for the origin 0. We can always find a refinement level k£ such that A is contained within

L.
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3.3. Comparison with other linear conditions

We compare our conditions for the case m = 3 (which corresponds to convexity of bivariate
polynomials) with other linear conditions.
Chang and Davis [2] derived the conditions

CD = {as3+a12—a13—0a23, G1,1+023—012—A1 3, A2 2+01 3—A23—012} > 0 (38)

which were also discussed by Dahmen and Micchelli [5] in the multivariate setting. These
inequalities are equivalent to convexity of the control net of the corresponding triangular
Bézier patch. Based on diagonal dominance of matrices, Lai [13] developed the conditions

L= {2a33+a22+a12—013—3a23, 2a33+0a1,1+012—023—3a13,

(39)
a1,1+023—012—01 3, 02,2+a1,3—01,2—a2,3} >0

Using the idea of weaker diagonal dominance, Carnicer, Floater and Pefa [1]| recently
derived the sufficient conditions

CFP={ 2ai11+as2+as3—3a12—0a13, 201,1+0a33+023—3a1,3—01 2,
2ag9+a1,1+a13—3a12—023, 2a32+a33+0a13—3 a23—01 2, (40)
2a33+a1,1+a19—3 a13—023, 2a33+az2+a12—3 az3—arz } > 0.

The linear conditions which are obtained from (29), by choosing a cross—polyhedron, for
the refinement level £ € {2,3,..,9} (see (23) and (17) are denoted by Ci. Similarly, the
inequalities which are obtained from (33), by choosing a simplex, for the refinement level
k € {3,4,..,10,12} are denoted by Si. The considered refinement levels lead to constraints
consisting of 18 independent inequalities at most.

It turns out that the above conditions (38), (39), (40) may be obtained as special cases
of our construction:

CD>0 & 8>0, £L>0 & C>0, and CFP>0 & S > 0. (41)

In order to compare the various conditions we randomly generated 100.000 symmetric
3 x 3 matrices A with components from [—1,1]. All conditions are homogeneous; they
depend only on the ratios of the matrix components, i.e., on the direction of the vector
d = (a1,1,01,2,013,022,023,033) € R®. For our experiment we therefore considered only
those of the generated matrices which possess components within the unit sphere of R,

ail + a%,z + ai3 + ag,2 + ag,s + a§,3 <1 (42)

This led to a uniform distribution of the directions d. Only 1009 of the generated matrices
were conditionally nonnegative definite and satisfied (42). The table below shows the
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detected matrices in % 0oCo g
«Co

100 C Cs €7 Sos% S,

90 CEP.° s ° S
S Ciyy % &

80 YO

70 St
®

60 L ©Csy

5071 CD ©8;

00734 6 8 10 12 14 16 18 7 inequalities

Figure 5: Comparison of convexity conditions

number and percentage of matrices that were detected by the different conditions and the
number of linearly independent inequalities.

L,Cy C3 C4 C; C¢ Cr Cg Co |CD,S35 Sy S5 CFP,S6 S Sg So S0 Sio
detected: | 631 794 881 931 952 967 978 987| 506 736 823 886 910 937 951 970 982

percentage:|62.5 78.7 87.3 92.3 94.4 95.8 96.9 97.8| 50.1 72.9 81.6 87.8 90.292.9 94.3 96.1 97.3
#inequ: | 4 6 8 10 12 14 16 18 3 6 9 6 15 12 15 18 18

The relation between the number of inequalities and the percentage of detected constraints
is depicted by Figure 5. The black and white dots indicate the conditions C; and &;,
respectively, whereas the conditions CD, L, CFP are represented by big circles. Note that
the number of independent inequalities for the conditions S; is not monotonic. This is due
to the lack of central symmetry of the generating polyhedron. The figure illustrates the
fact that the percentage of detected constraints tends to 100% if the refinement level £ is

increased.

4. Convex multivariate polynomials

With the help of the results of the previous section we derive linear sufficient convexity
conditions for multivariate polynomials. The obtained conditions are shown to be asymp-
totically necessary.

4.1. Linear convexity conditions

Consider again the multivariate polynomial p(z) : R® — R, see (5), in BB representation
with respect to the simplex v C R®*. We associate with p and with the simplex v the
polynomials

@ = 3 bslsy ) BEXAW,D) with b(s,,v) = by (pv)  (43)

Bezi,|Bl=d—2
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for all v € Z5™', |y| = 2. These polynomials are related to the second partial derivatives of
the BB representation (5) with respect to the barycentric coordinates A(v, z),

0 0
N O\

Sete; = d (d—1) s(A(v,z)) with s(A(v, z)) = p(z). (44)

The following convexity criterion has firstly been formulated by Chang and Davis [2] for
s = 2. It has later been generalized to arbitrary dimension by Dahmen and Micchelli [5].

Proposition 4. The polynomial p(z) is convex for x € v if and only if the (s+1) x (s+1)
matriz H(z) with the components

hij(7) = Se;ye;(7) 4,5 =1,.,5+1 (45)
s conditionally non—negative definite for all z € v.

For the proof we refer to [2, 5]. In addition it can be shown that the polynomial is strongly
convex if and only if the matrix (45) is conditionally positive definite.

We choose a refinement level [ = 1,2,.. for the polynomials s,(z) and consider the
following set of matrices:

Ai(p,v) ={ A= (aij)ij=1,.s11 With a;; =0bs(Se¢;1¢;,7) |
Bl=d—2, BeZ" and 7€ T(v)}

For generating these matrices one firstly has to subdivide the polynomials s, (z) with re-

(46)

spect to the triangulation 7;(v) of v. The matrices result by collecting corresponding BB
coefficients. For each individual simplex vy € 7;(v) of the triangulation, the components
of the corresponding matrices are taken from all sub—simplices with edge-length 2 of the
BB coefficient scheme, see Figure 6 for an illustration of the bivariate case.

bs,0,0 O—o—o : 51

Figure 6: Components of matrices A;(p,v) in the bivariate case.

Note that subdividing the polynomials s,(z) only weakens the resulting constraints if
the polynomial p(z) has degree d > 4. Otherwise the polynomials s,(z) are constant or
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linear and their original BB coefficients are kept by subdividing them. Hence, if d < 4
holds one may always set [ = 1.
Now we consider the inequalities

Tki(p,v) 20 with  Jyu(p,v) = U{ Te(A) | A e Alp,v) } (47)

where Z;(A) has been introduced in (23) (after choosing a polyhedron within the hyper-
plane (19) and a refinement level k for its facets). These are linear inequalities for the BB
coefficients bgz(p, v).

Theorem 5. If the inequalities (47) for the BB coefficients bg(p,v) hold, then the polyno-
mial p(z) is convex for x € v.

Proof. Consider the matrix (45) at an arbitrary point z € v. Let z € 7 € T,(v). Then

hig@ = Y bs(Sere;7) By 2(A(r,2)) fori,j=1,.,s+1. (48)
1 N——
Berst,|Bl=d—2 >0

Hence, the matrix H is a non-—negative linear combination of matrices from the set A;(p, v).
These matrices are conditionally non—negative definite as their components fulfill the in-
equalities (23). Thus, the Hessian H(z) is conditionally nonnegative definite. ]

For instance, choosing the refinement level [/ = 1 and the conditions S3 from the preceding
section we obtain in the case s = 2 the convexity criterion of Chang and Davis which is
equivalent to the convexity of the piecewise linear interpolant of the BB coefficients [2]. In
the case of a cubic polynomial we obtain a system of 9 linear inequalities. Similarly, ap-
plying the conditions Sg (which are equivalent to CFP) to a cubic polynomial p(z) results
in a system of 18 linear inequalities. of 18 linear inequalities.

4.2. Asymptotic necessity

The following observation is similar to Lemma 1.

Lemma 6. Consider a finite set of polynomials p;(z) in BB representation with respect to
the s—simplices v; € R® (i = 1,..., P), where p;(z) is assumed to be strongly convez for
T € vy, i.e., the matrices (45) are conditionally positive definite. If the refinement level | is
big enough, then all matrices A;(p;,v;) are conditionally positive definite.

The proof is a consequence of the subdivision property (13). Its details are omitted. If
the refinement level [ is increased, then the components of the matrices from A;(p;, v;)
converge to the values of the polynomials s, (z), hence the matrices themselves converge to
the Hessian matrices (45) which are assumed to be conditionally positive definite.
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Theorem 7. Consider again the set of polynomials from the previous Lemma. If the
refinement levels k,l are big enough, then the BB coefficients of all polynomials fulfill the
linear inequalities Ty 1(pi, vi) > 0.

The proof is an immediate consequence from the previous Lemma and from Proposition 3.
By increasing the refinement levels, the linear sufficient convexity conditions Jy ;(pi, vi) > 0
can be made as weak as desired. This result can be interpreted in a geometric way,
analogous to Figure 4. Similar to the components of conditionally positive definite matrices,
the BB coefficients of convex polynomials form a convex cone. In fact, for quadratic
polynomials the components of the single matrix in .4;(p,v) are identical with the BB
coefficients bg(p,v). Our construction inscribes another convex cone which is bounded by
hyperplanes. If the refinement levels are increased simultaneously, then the inscribed cone
converges to the cone of convex polynomials.

5. Concluding remarks

This article has presented a general construction for arbitrarily weak linear sufficient con-
vexity conditions for multivariate polynomials. Other linear conditions appear as special
cases of the general construction. With the help of the linearized convexity conditions, the
construction or modification of convex multivariate polynomials (or piecewise polynomi-
als) can now be formulated as optimization problems with linear constraints. For instance,
Willemans and Dierckx have derived a method for convex surface fitting using piecewise
quadratic polynomials on Powell-Sabin—splits [18]; they are led to an optimization problem
with both linear and quadratic inequality constraints which is solved using nonlinear pro-
gramming. Using the linearized convexity constraints it is now possible for formulate the
same problem as a so—called quadratic programming problem (minimization of a quadratic
objective function subject to linear constraints) which is one of the standard problem in
optimization theory [7]. With the help of adaptive subdivision of the parameter domain
it is possible to adapt the linearized convexity conditions to the specific situation. Also,
the linearized convexity conditions can easily be applied to piecewise polynomials of higher
dimension, higher degree, and higher order of differentiability.
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bo,0,2(p; w)
= Bloss p(w2, w2)

bo,1,1(p,w)
bl,O,l(p; w) = . = Bloss p(’wl, w2)

bo,2,0(p, w)
= Bloss p(wy, wy)

b2,0,0(p,w) = . s o(po0) wy
1,1,0\P, W

o = Bloss p(T'UOJU)l)

Figure 1: Computing the BB coefficients of a polynomial (s = 2, d = 2) via

L

its blossom (scheme).

Figure 2: Canonical split 75 of the simplex A?) (left) into 8
tetrahedrons (right).
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Figure 5: Comparison of convexity conditions
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Figure 6: Components of matrices A;(p,v) in the bivariate case.



