Bounding the Hausdorff Distance of
Implicitly Defined and/or Parametric Curves

Bert Juttler

Abstract. This paper is devoted to computational techniques for gener-
ating upper bounds on the Hausdorff distance between two planar curves.
The results are suitable for pairs of implicitly defined and/or parametric
curves. The bounds are computed directly from the control points resp.
spline coefficients of the curves. They improve an earlier result of Seder-
berg [10, Eq. (6.2)]. Potential applications include error bounds for the
approximate implicitization of spline curves, for the approximate param-
eterization of (piecewise) algebraic curves, and for algebraic curve fitting.

§1. Introduction

The notion of distance between two curves (and surfaces) is important for
various applications of geometric design; see Bogacki and Weinstein [2] for a
detailed discussion of several possible definitions. Parametric distance mea-
sures, such as the maximum norm of the difference vector of the parametric
representations, are certainly useful in applications. These measures, how-
ever, are non—geometrical; they also tend to overestimate the real distance.
Moreover, these measures cannot be used if one or both curves are given by an
implicit representation, such as for piecewise algebraic spline curves, see [10].

This paper focuses on the well-known Hausdorff distance between two
curves. We introduce the auxiliary notion of the footpoint distance, which
is closely related to it, and develop a computational technique for generating
upper bounds, directly from the control points resp. spline coefficients of the
curves. The results are suitable for pairs of implicitly defined and/or para-
metric curves. They improve an earlier result of Sederberg [10], see end of
Section 3.

The potential applications include error bounds for the approximate im-
plicitization of spline curves and surfaces (cf. [4]), for the approximate param-
eterization of algebraic curves and surfaces (cf. [1]), and for curve and surface
fitting with algebraic spline curves and surfaces.
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Fig. 1. (a) A planar curve can be defined as the zero contour of a biquadratic
tensor-product spline function. (b) Footpoint x € F of a point § and
the path of steepest descent (dotted line). See Lemma 1 and Corollary 2.

§2. Implicitly Defined Algebraic Spline Curves

Consider a closed bounded set Q@ C IR2. The zero contour of a bivariate
function f(x) = f(z1,z2) Z 0 with the domain €2,

F={x|f(x)=0Ax€Q}, (1)

defines a planar curve JF, possibly consisting of more than one segment. If the
function f is a bivariate spline function, then the curve F will be a piecewise
algebraic curve, i.e., an algebraic spline curve. For instance, one may choose
the function f as a tensor-product spline function of degree (d, d),

f(x) = f(z1,z2) Z Mg (zy) (x2) Dij x € (), (2)
(i.3)€T

where the B-splines M{(x1) and Nf(z3) are defined over suitable knot se-
quences. In this situation, the spline coefficients (control points) p; ; € R can
be associated with the rectangular grid in the z;x9—plane, which is obtained
from the Greville abscissas of the knot sequences, see e.g. [9]. The index set Z
contains the indices of all ‘active’ control points,

(i,) € T <= Ix" = (a},23) € Q: MI(w}) Ni(23) 0. (3)

An example is shown in Fig. 1la. The curve F is defined as the zero contour
of a biquadratic tensor-product spline function with a regular grid of knot
lines. Then, in the biquadratic case, the control points are associated with
the centers of the cells. The domain €2 of the spline function consists of all
grey cells. The active control points are marked by circles.

Alternatively, algebraic spline curves can be defined by piecing together
the zero contours of triangular Bézier surface patches, see e.g. [10]. This
representation is particularly useful if the implicit representation of the curve
is generated by implicitizing a parametric one.

Throughout this paper we assume that the function f is at least C!, and
that its gradient satisfies V f(x) # (0,0) for all x € Q. Consequently, the zero
contour (1) is differentiable and has no singularities, such as multiple points
OT Cusps.
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§3. Distance of a Point

Consider a point £ € Q. Any point x € F satisfying (§ — x) x Vf(x) =0
will be called a footpoint of £, see Fig. 1b. Here, x is the two-dimensional
exterior product, v X w = vyws — vaw,. The inner product of vectors will be
denoted with v - w, and the Euclidean distance of the corresponding points
with dist(v,w) = |v — w]|.

Lemma 1. Consider a point £ = (£1,&2) € Q. Let x = (z1,22) € F be a
footpoint of €. If the line segment x€ is contained in Q, then the distance of
the points £ and x can be expressed as

- _ Vi)
dist(x, &) = Vi) -V 1£(€)l, (4)

where n is a certain point on the line segment connecting the points x and §,
ct. Fig. 1b.

Proof: Let g(t) be the restriction of the function f to the normal of F at x,

ey VG
o) = Fxtt ) )

As x € F is a footpoint of &, this function satisfies one of the equations
g(dist(x,&)) = f(€) or g(—dist(x,&)) = f(€), depending on the orientation of
the gradients. Moreover, g(0) = 0. Using the mean value theorem, we obtain
in the first case

FO-0 . o Vi)
dst 8 9N = VI 5G] ©)

for some A € [0, dist(x, &)], and with n = x+ A IIgﬁggH' The assertion follows
by solving this equation for dist(x,€). The second case can be dealt with
analogously. O

This lemma can be used for bounding the distance of points & € 2 from
its footpoints. With the help of the control points of the spline functions, we

are able to generate an upper bound C on the length of the gradients,

IVfx)] <C for xeQ. (7)

In addition, we may generate a lower bound Dy on the inner product of the
gradients of any two neighbouring points whose distance does not exceed a
certain constant h,

IVf(x)-Vf(y)| > Dp holds for all x,y € Q with dist(x,y) <h. (8)

The methods used for computing these bounds are described in Section 6. As
a consequence of Lemma 1 we obtain the following result, which bounds the
distance without computing the footpoint x of £.
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Corollary 2. Consider again the situation of Lemma 1, and assume (7), (8).
Let the parameter h be chosen such that h > C/Dy, f(€). The distance of the
point & from its footpoint x on the curve F is then bounded by

) C
dist(x, §) < Dy f(&). (9)

This result (and similarly the Theorems 3 and 4) can be used only if the
parameter A is not too small. On the other hand, the smaller the parameter
h, the bigger the lower bound Dj. The choice of a suitable constant h is
addressed in Section 7.

If the point & approaches its footpoint x, the bound (9) converges to zero,
as &€ — x implies f(&) — 0.

This corollary improves an erroneous result in [10]. According to inequal-
ity (6.2) of [10], the distance can be bounded by C f(£). (The original formula
is slightly different, but it is in fact equivalent to this one.) However, this for-
mula is valid only if additional assumptions about the domain €2 are satisfied,
which have so far not been specified. More precisely, the domain €2 has to
contain both the point & and the point x* on the curve F which is obtained
by following the path of steepest descent, starting at €, see Fig. 1b. Generally,
the latter point is not the footpoint &.

§4. Distance of Two Implicitly Defined Curves

Let F be a planar curve defined by (1) and (2), and let the second curve G be
defined by
G={x[g(x)=0AgeQr}, (10)

where g(x) is a another bivariate spline function

g(X) = g(xlax2) = Z Mzd(xl) N]d(x2) qi.5, X € Qa (11)
(4,5)€T

with control points ¢; ; € R and domain €2. The knots of f(x) and g(x) are
assumed to be identical. Let Gy be the segment of G which consists of all
points which have at least one footpoint on F,

Go={y|lyegVvixeF:(y—x) Vf(x) =0}, (12)

see Fig. 2. We consider the maximum distance of the points of Gy from their
footpoints,

dist™(F,G) = sup  inf  dist(x,y). (13)
YEGy x€EFisa
footpoint of y

This measure will be called the one—sided footpoint distance. By symmetrizing
it we obtain the footpoint distance

Dist™ (F, G) = max{ dist¥ (F, ), dist¥ (G, F) }, (14)
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Fig. 2. The curve segments F (grey), G\ Go (dotted), Go (solid), and the bound-
ary points OF (marked by circles).

which is closely related to the Hausdorff distance (see [2])
Dist™ (F, G) = max{ dist®(F, G), dist™ (G, F) }, (15)

where distH(}" ,G) = supy g infxer dist(x,y), as follows. The left part of the
Hausdorff distance can be bounded by

dist™(F,G) < max{dist™ (F,G), sup inf dist(x,y)}, (16)
x€G\Go yEOF

v

-~

(*)

where OF is the set of all (finitely many) boundary points of F, cf. Fig. 2. If the
minimum distance of a point y € Gy from F always occurs at one of its foot-
points (and not at the boundary points 0.F), then the inequality (16) becomes
an equation. This is a realistic assumption in applications. Consequently, if
one ignores the contributions (x) at the boundary, the Hausdorff distance of
the curves F and G is essentially equal to the footpoint distance (14).

Theorem 3. Let K = max( jjez |pi,j — %,;|, and assume (7), (8). The
domain () is assumed to contain the line segments connecting the points in
Go with their footpoints on F. Let h be chosen such that h > C /Dy, K. The
one—sided footpoint distance is then bounded by

dist™ (F, G) < Yk (17)
Dy,

Proof: Consider a point y € Gg, hence g(y) = 0. Using the convex hull
property of B-splines we obtain |f(y)| = |f(y) — 9(y)| < K. Inequality (17)
now follows from Corollary 2. O

If the curves F and G are sufficiently close to each other, then the differ-
ence f(x) — g(x) can be expected to be small, provided that the sign distri-
butions of f and ¢ are similar. Consequently, Theorem 3 can be expected to
give tight upper bound for the distance of the curves.

Using this theorem, we are now able to derive bounds on DistF(]: ,G),
directly from the control points of the bivariate spline functions f and g. An
example is given in Section 7.
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§5. Distance of Implicitly Defined and Parametric Curves

Once again, let F be a planar curve defined by (1) and (2), and let H be a
parametric B-spline curve of degree k (see [7]),

H={h(t)|te]0,1]}, (18)

with the parametric representation h(¢) and parameter domain [0, 1]. Consider
the spline function of degree 2dk which is obtained by restricting f(x) to the

curve h(t),

f((t) =) PM*(t) by, te0,1], (19)

1=0

where the B-splines Pfdk (t) of degree 2dk are defined over an appropriate knot
sequence. In addition to the original knots of h(t), it contains the parameter
values of the intersections of H with the knot lines of the bivariate spline
function f(x), both with sufficient multiplicity. For instance, if h(¢) is a cubic
spline curve, then the parameter values of the intersections with the knot lines
can be found by solving a couple of cubic equations.

The coefficients h; € IR can be computed with the help of algorithms for
composing spline functions. A blossoming—based approach has been described
in [3]. Alternatively, one may construct the B-spline representation of f(h(t))
with the help of interpolation techniques.

The one-sided footpoint distance dist™ (F,#) can be defined as in (13).
It is a useful distance measure in several applications, such as the approxi-
mate implicitization of the parametric B-spline curves H, see [4], or for the
approximate parameterization of the implicit curve F. With the help of the
control points h; we obtain the following upper bound.

Theorem 4. Let H = max;—o,...m |hi|, and assume (7), (8). The domain Q
is assumed to contain the line segments connecting the points in Hy (which
is defined as Gg) with their footpoints on F. Let h be chosen such that
h > C/Dy, K. The distance of the points of Hy from their footpoints is then

bounded by
C

dist™ (F,H) < — H. (20)
Dy,
Proof: Consider a point y € Hg, hence y = h(tg) for some tg € [0,1]. Using
the convex hull property of B-splines we obtain |f(y)| = |f(h(¢o))| < H.
Inequality (20) now follows from Corollary 2. O

§6. Generating the Bounds C' and D,

In order to generate the constants C and Dj, in the inequalities (7) and (8),
we split the spline function (1) into polynomial segments with the subdo-
mains Q*),

fx)=f®(x) for xeQ® k=1,... K. (21)
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Fig. 3. Splitting the tensor-product spline function into polynomial (tensor—

product Bézier) segments, and definition of the index sets ICgbk).

The K subdomains Q®*) of the polynomial pieces are either the cells of the
original spline function, or they are obtained by splitting them further into
smaller rectangles. Using smaller subdomains Q) instead of the cells of the
spline function, we may obtain tighter bounds C' and Dy,.

As an example, Fig. 3 shows the enumeration of the subdomains Q%)
which are used for splitting the spline function of Fig. 1a into polynomial
pieces. Here, they are obtained by subdividing each of the original quadratic
cells into four smaller squares.

Using knot insertion we obtain for each subdomain a tensor-product
Bézier representation

d d
FO) =33 B(z) Bd(az) b, xe®, (22)
=0 7=0

with certain coefficients b( J). Moreover, we may compute a tensor—product
Bézier representation of the associated gradients

d d

ViIOx) =33 Bl(z) Bdaz) ¢ x e ), (23)
=0 7=0

where the control points c! J) are obtained from the formulas for differentiation
and degree elevation of tensorfproduct polynomials in Bernstein—Bézier form.
Note that the first (resp. second) component is a polynomial of degree (d—1, d)
(resp. (d,d — 1)). Thus, degree elevation is needed in order to obtain the

representation of the form (23).
Inequality (8) involves gradients at two points with a certain maximum

distance h. For each subdomain Q) we denote with IC;Lk) the indices of all
subdomains that are within distance h of it,

i€ IC(k) —= IxeQ® Iy c QO : dist(x,y) < h. (24)
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Fig. 4. The Hausdorff distance bounds which are obtained for two cubic Bézier
curves by representing them in implicit and/or parametric form.

Geometrically, the set IC,(lk) contains the indices of all subdomains which have
points within the offset curve (which consists of line segments and circular
arcs) at distance h of the boundary of Q)| see Fig. 3.

Lemma 5. The inequalities (7) and (8) are valid with the following constants:

k . k k
C = max ||c( )H and D = min c{F) k) (25)
k— K (2% (k1) 21,71 12,72
k=1,..., ki=1,...K; k2 €K\

7:1 77:27j17j2=07"'ad

Proof: These constants are obtained by applying the convex hull property of
polynomials in Bézier form to the gradient (23) and to the inner product of
gradients

Vf(Xl) . Vf(XQ), X1 € 2, xo € (2, diSt(Xl,XQ) <h O (26)

§7. Examples and Conclusions

We apply the theoretical results to the two cubic Bézier curves F and G which
are shown in Fig. 4. Both curves have identical segment—end points and are
fairly close together. Thus we have F = Fy, G = Gy, and the minimum dis-
tance of a point on one curve to the other curve always occurs at its footpoint.
Consequently, the Hausdorff distance (15) is equal to both one—sided footpoint
distances dist™ (F,G) and dist™ (G, F).

Originally, the curves are given as cubic Bézier curves f(¢) and g(t), both
with the domain [0,1]. After implicitizing them, we obtain (bi-) cubic tensor—
product polynomials f(x) and g(y). In order to obtain suitable constants C
and Dp,, we choose the domain € as the union of all squares (size 0.15 x 0.15)
which are shown in the figure. Within each square, the functions f and g are
represented in tensor—product Bézier form.

As outlined in Section 6, we generate the constants C' and Dy, for both
curves, where h = 0.15. This eventually gives the following bounds on the
Hausdorff distance of both curves:

(a) Theorem 3 (pair of implicitly defined curves): Dist™ (F,G) < 0.108.

(b) Theorem 4 (implicit and parametric curve): Dist™ (F,G) < 0.052. Here,
the composition f(g(t)) yields a polynomial of degree 9. The upper
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bound H is found as the maximum absolute value of the control points
which are obtained after splitting it uniformly into four Bézier segments.

Both bounds should be compared with the one which results directly from the
parametric representations:

(¢) From the convex—hull property (pair of parametric curves):

Dist™ (F,G) < max If(t) — g(t)| < 0.119. (27)
E )

The upper bound is obtained as the maximum length of the difference
vectors of the corresponding control points which are obtained after split-
ting both curves uniformly into four Bézier segments.

The three bounds are shown in Fig. 4. The second bound is fairly close to the
exact Hausdorff distance of both curves.

The above bounds depend on the choice of the constant h, which is an
initial estimate of the Hausdorff distance. If a parametric representation of
both curves is available, then the corresponding bound (c) can serve as an
initial value for h. Alternatively one may use discretization—based or heuris-
tical techniques. This should then be combined with an iterative adaptation
technique.

The bound (b), obtained by combining implicit and parametric represen-
tations is the tightest one. Theorem 4 will be useful to obtain error bounds
for the approximate implicitization and approximate parameterization of al-
gebraic spline curves and surfaces, cf. [1,4].

The bounds (a) and (c), obtained by using either the implicit represen-
tations or the parametric ones, are almost identical. However, it should be
noted that Theorem 3 provides distance bounds for the more general class of
algebraic spline curves, whereas the parameterization-based techniques can
deal only with rational ones. Also, the parameterizations of the two curves
are relatively similar, as they have identical segment end points. In the gen-
eral situation the parameterization-based approach is expected to give less
accurate results.

The techniques presented in this paper can be used only if, at least within
a neighbourhood of the curve, the gradients V f(x), Vg(x) of the functions
f(x), g(x) satisfy certain regularity conditions. Ideally, these gradients would
all be unit vectors. Then, the function f(x) would be simply the signed dis-
tance function, or ‘normal form’, of the curve. See [5,6] for further information
on normal forms and their applications. Theorems 3 and 4 can be applied to
functions whose gradient field is not too different from the ideal situation. In
particular, points with vanishing gradients (extrema and saddle points) of the
functions are f(x), g(x) have to be excluded.

In order to obtain tighter bounds, the gradient fields could be improved
by multiplying the defining functions with suitable bivariate polynomials.

The curve fitting algorithms described in [8] and [11] produce bivari-
ate spline functions whose gradients approximate unit vectors along its zero
contour (i.e., along the corresponding algebraic spline curve). In addition
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to avoiding singularities, this makes these functions well suited for applying
Theorems 3 and 4.

As a matter of future research, we plan to extend the results of this paper

to algebraic spline surfaces.

10.
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