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Abstract

Using rational motions it is possible to apply many fundamental B—spline techniques to the design of motions.
The present paper summarizes the basic theory of rational motions and introduces a linear control structure
for piecewise rational motions suitable for geometry processing. Moreover it provides algorithms for the
calculation of the surface which is swept out by a moving polyhedron and examines interpolation techniques.
The methods presented in this paper can be applied to various problems in Computer Animation as well as

in Robotics.
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Introduction

During last years, it has been realized that the methods of Computer Aided Geometric Design
(CAGD) provide elegant tools for various tasks in Computer Graphics, Robotics and Kinematics,
especially for the design of rigid body motions. One of the first contributions to this research
area was the spherical generalization of the de Casteljau algorithm introduced by Shoemake[28] in
order to interpolate the orientations of a moving object, cf. also [19, 23]. More recently Ge and
Ravani[8] and Park and Ravani[22] presented methods for constructing so-called Bézier motions by
generalizing the subdivision algorithm of Bernstein—Bézier curves. Yet these techniques have one
important disadvantage. The resulting motion splines are non-rational which leads to computa-
tionally expensive algorithms. On the other hand the trajectories of points of the moving object
are transcendental curves. Of course, it is possible to compute the trajectories pointwise, but in
general there exists no rational parametric representations of these curves.

In contrast to this, the methods of Computer Aided Geometric Design are mostly based on paramet-
ric representations of curves and surfaces, especially on (polynomial or rational) B-spline represen-
tations, cf. [11]. In order to apply CAGD-methods to kinematical problems, it therefore seems to be
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essential to restrict to motions with only rational point trajectories. Such motions, called rational
motions, have been subject of investigation in theoretical kinematic for about one century, cf. [5].
The first who applied rational motions to motion design were Ge and Ravani[7]. Their interpolation
algorithm is based on rational dual quaternion curves not satisfying Pliicker’s condition. Another
contribution has recently been given by Johnstone[12] who used normalized rational quaternion
curves in order to interpolate orientations of a moving object for animation. Nevertheless neither
of these approaches takes advantages of the geometric properties of the resulting motion splines.
The present paper tries to fill this gap by introducing spatial rational B—spline motions. It discusses
geometric properties, computation and design of such motions. All point trajectories of the pre-
sented motion splines are rational B-spline (NURBS) curves. Moreover, many surfaces generated
by a rational B—spline motion, such as sweeping surfaces or envelopes of moving planes, cylinders
or cones, are rational tensor product B—spline surfaces.

The paper is organized as follows. In the first two sections we present the basic theory of rational
B—spline motions which is based on a linear control structure analogously to the control polygon
of a NURBS curve. In the third section we examine the motion of planes and present algorithms
for the exact computation of the enveloping surface of a moving polyhedron. The fourth section
finally deals with different techniques for the design of spatial rational B—spline motions, cover-
ing algorithms for motion interpolation and the optimization of rational motions under energetic
constraints.

1. Preliminaries

In this section we briefly summarize some fundamentals of spatial Kinematics (see [2]), piecewise

rational motions, and of the theory of univariate B-spline functions (see also [6, 11, 27]).

1.1 Spatial kinematics

Consider two coinciding real Euclidean 3-spaces, the fized space E* and the moving space E3.
Both spaces are associated with right-handed Cartesian coordinate frames. In order to simplify
notations, points in E?, E? will be described with help of homogeneous Cartesian coordinate vectors
P =(pop1p2ps)’, b, respectively. R
The space E? is assumed to perform an Euclidean motion with respect to E3. Each position of E?
can be described with help of a real 4 X 4-matrix

v |0 0 0
U1

M = 1
U3



B. Jiittler and M. Wagner/Spatial Rational B-Spline Motions

where the 3 X 3-sub-matrix R = (7;;); j=1,2,3 satisfies the orthogonality conditions
R-RT =41 and det(R) > 0. (2)

The letter I denotes the identity matrix. The position p € E of a point p of the moving space E3
results from a linear transformation

p—~p=M-p (3)
of homogeneous coordinate vectors. The matrix M represents a spatial displacement, the component
vp is called the weight of the displacement. Note that the homogeneous coordinate vector u =
(v v1 g V3 )T describes the position of the origin of the coordinate frame of the moving space E3
whereas R defines its orientation.

A continuous one-parameter set of positions of E3 defines a motion M = M(t) where the parameter
t is assumed to be the time. The curve

p(1) =M(?)-p (4)

is called the trajectory of the point p € E3.

1.2 Piecewise rational motions

If there exists a representation M(¢) of the motion M such that all element functions of the matrix
M(t) are (piecewise) polynomials of maximal degree k, M is called a (piecewise) rational motion of
degree k. Then, all trajectories are (piecewise) rational curves of maximal degree k. The study of
rational motions dates back to Darboux[5] who examined the quadratic case thoroughly in 1895.
Detailed geometrical discussions of rational motions of degree n = 3 and n = 4 were given by
Waunderlich[32] and Réschel[26].

According to [13, 15] any piecewise rational motion M(¢) of degree k possesses a representation

To(A+d3+d3+d3) |0 0 0

M(1) = N . (5)

with
A2 d?—d2—d2  2dydy — dods)  2(dyds + dody)
D = D(t) = Q(dldz + dodg) d% - d% + d% - d§ 2(d2d3 - dodl) . (6)
2(dyds — dody)  2(dads + dody)  d3 — d? — d2 + d2

Here, the 8 parameters To(t), vi(t),...,vs(t), and do(t),...,ds(t) are piecewise polynomials of
maximal degree k — 2/, k, and [, respectively, where the number [ satisfies 0 < 2/ < k. The four
parameters do,...,ds are Fuler’s parameters of the rotational part D(¢) of the motion (6), which
are well known in Kinematics, see [2]. In the sequel we will collect these parameters in a vector
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d = (dody dyds)T from R,

Consider the first column

o(0)lld(t)]?

4

_ ( )
( )

of the matrix (5) with [|d(¢)|2 = do(1)? + di1(1)? + da(1)* + ds(t)®. The piecewise rational curve,
which is described by the homogeneous coordinate vector u(t), is the trajectory of the origin of
the moving space E3. On the other hand, the 3 x 3-matrix D(¢) represents the rotational part of
the motion M(?) defining the orientation of the moving space. For any instant ¢, the moving space
results from the fixed space by a translation composed with a rotation. The translation maps the
origin of the moving space to the point u(¢) from (7), whereas the angle ¢ of the rotation and the
normalized direction vector a of the axis result from

do = ||d| cosg and

5 (8)
(didyds)" = |d]sinZa  (3Ta=1).

The vector J(t) formed by Euler’s parameters can be identified with the quaternion which corre-
sponds to the rotation (6). Quaternion calculus is one of the basic tools in theoretical kinematics
(see [2]) since the composition of rotations can be expressed with help of quaternion multiplication.

1.3 B-spline functions

Let k be a positive integer, and let

T: (to,tl,tg,...,tm+k+1) (9)

be a nondecreasing sequence of m + k + 2 real numbers with ¢; < ¢;4z41 fore=0,...,m. The m+1
associated B—spline basis functions, denoted by ! Z-’fT(t), are defined by the recurrence relation

; -1 g—1
Nip(t) = &l p(ONT (1) + (1 =l ()N (1) (¢g=1,...,k) (10)
where
t—t;
il < iy
wip(t) = litg — (11)
0 otherwise,
and
1 ift; <1<ty
N2p(t) = e 12
ir(?) { 0 otherwise. (12)

The vector T and the number k are called the knot vector and the degree of the B—spline basis

functions N’5(t), respectively. The N..(t) obviously are piecewise polynomials of degree k, which
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are (k — v;)-times continuously differentiable at ¢ = t;, where v; denotes the multiplicity of the
knot ¢; in the knot vector T. The basic tool for handling B—spline functions is the knot insertion

algorithm providing possibilities for evaluation and subdivision. For details we refer the reader to
[6, 11, 27].

2. Rational B—spline motions and their control structure

Starting with an algorithm for the construction of piecewise rational motions, this section introduces
a linear control structure for piecewise rational motion splines which is an analogon to the control
polygon of a NURBS curve.

2.1 Construction of piecewise rational motions

In the following we construct a piecewise rational motion M(t) of degree k by choosing the pa-
rameters To(1), V(1) = (v1(t) va(t) vs(1))T, and d(t) = (do(t) ... ds(1))T from equation (5) as
(vector-valued) B-spline functions of degree k — 2I, k, and [, respectively, defined over certain
knot vectors (I fixed with 0 < 2] < k). We will derive a representation of the motion (5) as a

matrix—valued B—spline function
m

M(t) = Z NEA(1) A; (13)

=0
with m 4 1 constant coefficient matrices A;. According to (5) we therefore have to compute certain
products of the B-spline functions To(¢), v1(t), v2(t), v3(t), and do(t),...,ds(t), which can be done
by using product formulae for B-spline basis functions (see [18]). Since these formulae turn out to
be relatively complex we propose a different technique based on knot insertion and knot removal.
Consider the knot set

/C:{to,tl,...,ts}C]R (14)

which is obtained as the union of the knot sets of the three B-spline functions Tg(#), v(t), and d(t).
Note that each knot ¢; appears only once. The number s+ 1 denotes the cardinality of this set. We

moreover assume that the knots ¢; are ordered such that ¢; < t;41 (:=10,...,s—1).

Algorithm 1.

1. Split the B-spline functions wp(t), v(t), and J(t) into s polynomial segments by applying
Bohm’s algorithm, see [6, 11]. The jth segment is defined over the interval [¢;,1;44] (j =
0,...,s—1).

2. For each segment:

Compute a B-spline representation for the motion segment by inserting the corresponding

polynomial segments of Ty(¢), V(¢), and d() into the representation formula (5). The details
of this computation can be found in the Appendix of this paper.
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3. Collect the segments (44) in order to obtain a B-spline representation of the whole motion
(13). This representation is defined over the knot vector

T:(to,...,to, [ T 5 TR ts,...,ts,). (15)
——
k+1times k4 1 times k + 1 times

The constant matrices A, (p=0,...,m with m = (k4 1)s — 1) result from
Apgnyisi =AY (=0, 0k j=0,...,5 1) (16)
where AZ(-j) denotes the ¢th coefficient matrix of the jth motion segment.

4. Remove unnecessary knots from the knot vector (15).

The number of unnecessary knots which can be removed in step 4 depends on the order of dif-

—

ferentiability of the components. If the functions Ty(t), V(¢), and d(t) are r—times continuously
differentiable at instant ¢ = ¢;, the knot #; can be removed (r 4 1) times from the knot vector (15).
Algorithms for knot elimination are described in [9]. Note that this removal reduces the number
of coefficient matrices A; of (13). The result is a rational B-spline motion defined over a minimal
knot vector.

2.2 The control structure of a rational B—spline motion

Let us now consider a rational B-spline motion M(?) of type (13). Obviously, the m + 1 constant
coeflicient matrices have the form

win|0 0 0

A; = Wwia ) (17)
() Si
w;.3

In general, the m + 1 sub-matrices S; do not fulfill the orthogonality condition (2). Thus, the
matrices A; describe some affine mappings E? — E3.

Let us further consider an object O C E? in the moving space. The images A;-© C E? of this object
under the affine mappings A; will be called the control positions of the rational B—spline motion
(13) of the object O. These control positions are distorted copies of O since they are formed by the
images of all points of the object O under the affine mappings A,.

The set of all control positions is called the control structure of the rational B-spline motion (13)
of the moving object. As a first example, Figure 1 shows a rational B—spline motion of degree 4
illustrated by the control positions of a moving cube and by some uniformly distributed positions

of the moving unit cube.
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Figure 1: Control structure of a moving cube. The control positions and weight positions are
described by the affine displacements A; and F;, respectively.

The trajectory p(t) of a point p € O C E? is the non-uniform rational B-spline (NURBS) curve

m

p(t)=M(t)-p= Z NEL(DA; - P (18)

1=0

of degree k. The affine control positions
p; = (piopia pi2piz) =Ai-P (19)

of the moving point p are the control points of this NURBS—curve, whereas the components p; o are
the so-called weights of the control points. According to Farin (cf. [6]) the weights of a NURBS—curve
can be expressed by auxiliary weight points f; = p; + p;11, ¢ =0,...,m — 1 (sometimes also called
Farin points or frame points). The weight points divide the edges of the control polygon by the
ratio of the neighbouring weights. Analogously one can introduce weight positions F; = A; + A1
of a rational B—spline motion. The ¢th weight position of the moving object O C E3 is formed by
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the ¢th weight points of its points.

The use of rational B-spline motions (13) allows to apply the whole variety of B-spline techniques
to problems in motion design. This close relationship to NURBS—curves let rational motion splines
fit well into a standard CAD-package.

Remarks.

1. Note that for arbitrary affine displacements A;, the motion defined by (13) in general will not
be a Euclidean motion. Thus, it describes a so—called affine motion where the displacements
M(?) are affine displacements and the moving object is also subject to a certain distortion.

2. In case of planar motions, the control structure of a rational B—spline motion is formed by
so—called equiform displacements. Here, the affine control positions of a moving object are
similar to the object. A detailed discussion of planar B—spline motions can be found in [30].

3. The Euclidean spatial displacements (1) can be mapped to the points of a certain 6-dimensional
manifold ® of 12-dimensional affine space A'?, where the homogeneous coordinates of these
points are the components of the matrix (1). Of course a NURBS—curve on the manifold ®
corresponds to a rational B—spline motion and vice versa. The power of this simple mapping
lies in the fact that the trajectory of any point p € E? can be interpreted as the image of
the curve on ® under a linear mapping from A'? to E3, that depends on p only. This linear
mapping gives a geometric interpretation of the control structure of a rational B—spline motion
as the preimage of the control structure of the curve on ®. Similar to the mapping used in [30]
for planar motions, it can be used for the design of rational B—spline motions and the shape

discussion of their trajectories. For detailed information the reader is referred to [25].

2.3 Convex hull property and collision detection

If all control weights of the rational B-spline motion M(?) are positive, i.e. w; o > 0, every trajectory
fulfills the convex hull property for NURBS curves with respect to its control polygon (cf. [11]).
Consequently M(?) fulfills the convex hull property with respect to its control structure, i.e., the
region that is traced out by a moving object lies in the sum of the convex hulls of k& + 1 neighbouring
control positions at a time. If additional knots are inserted or M(?) is subdivided into two or more
motion segments by applying the knot insertion algorithm, the sum of these convex hulls converges
to the region traced out by the moving object (cf. Fig. 2).

Moreover, an arbitrary obstacle which does not intersect the convex hull of the control structure
cannot collide with the moving object. This can be used for simple and efficient algorithms for the
detection of collision free motions.

Experimental results show that the motions obtained by the interpolation scheme presented in this
paper usually have positive weights. However, if some of the weights are negative, the usual convex
hull property is not valid. Nevertheless the corresponding motion fulfills a projective version of this
property, which takes advantage of the weight positions, analogously to the projective variation
diminishing property for rational Bézier curves of Pottmann, see [24].
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Convex Hulls

at the beginning

after 1 subdivision

Figure 2: Control structure of a rational B—spline motion of order 5 with one segment. The sum of
the convex hulls converges to the area that is traced out by the moving cube.

3. A moving polyhedron

In this section we will compute the region which is traced out by a moving polyhedron. This
region is of interest for many applications, such as collision tests or the control of milling machines.
Generally, its boundary surface consists of different segment types. The surface segments are either
parts of the ruled surfaces which are generated by the edges of the polyhedron, or they are segments
of the developable surfaces which are enveloped by the faces of the moving object, see Figure 4.

3.1 The dual representation of a rational B—spline motion

In order to compute the developable surface segment which is enveloped by a face of a moving
polyhedron we will introduce the dual form of a spatial rational B—spline motion. Consider the
set of all points p = (po p1 p2 p3)' € E* whose homogeneous coordinate vectors satisfy the linear
equation

Popo+ Pip1 + Papa+ Psps =PTp = 0. (20)
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Obviously this set forms a plane. In the sequel we will collect the coefficients of (20) in a vector
P= (P, P, P, P3)T € R*\ {0} called the homogeneous coordinate vector of this plane (see e.g. [4]).
A point p € E? lies on the plane P iff PTp = 0 holds.

Further consider a spatial displacement M : E3 — E3: p — p = M-p. Obviously, this displacement
maps the planes of the moving space E? to those of the fixed space E?. We immediately obtain
that the image of a plane P in E? results from the linear transformation

P—P=M"-P (21)

where the real 4 x 4-matrix M* is given by M* = A(M™*)T. The real factor A # 0 can be chosen
arbitrarily. The mapping (21) is called the dual representation of the given spatial displacement M.
Owing the relationship from (1) we get

vg ‘ —¥'R
"
M= | O withv= | o |. (22)
8 ’UoR U3

Let us now consider a rational B-spline motion M(?) (see (13)) which has been constructed with
help of the formula (5) by choosing the parameters To(t), v1(%),...,v3(t), and do(t), ..., ds(t) as B-
spline functions. Using (22) we can compute the dual representation of the given rational B-spline
motion motion:

To (3 + d2 + d} + d3)? | ~v'D
0
M*(t) = 7, 23
(1) =% 0 (d2 + &2 + &2 + &2)D (23)
0

The real 3 x 3-matrix D(¢) has been introduced in (6). Thus, the dual form of a rational B—
spline motion can be described by a matrix—valued B-spline function M*(¢). Analogously to the
calculation of the control positions in Section 2.1 we can find a representation similar to (13), but
the order and the knot vector of the dual form M*(¢) are different from those of the motion M(%).
Again, the constant coefficient matrices of the matrix—valued B-spline function M*(¢) can be used
in order to define a control structure. In this paper we do not discuss this structure, we restrict
ourself to the computation of the developable surface segment which is enveloped by a face of a
moving polyhedron. A more detailed discussion of the dual representation of a rational B—spline

motion can be found in [29].

3.2 The surface which is enveloped by a moving polyhedron

We now consider a polyhedron in the moving space E?. At first we compute the segments of
developable surfaces which are enveloped by one fixed face of the moving polyhedron. The corners of

10



B. Jiittler and M. Wagner/Spatial Rational B-Spline Motions

this face are denoted by pg, ..., Py, where f+1 is the number of the corners. The Oth coordinates of
the corner points are assumed to be equal to 1. The letter F stands for the homogeneous coordinate

vector of the plane which contains the face py,...,ps. Then, the parametric representation
F(t) = M*(1)-F (24)

describes the motion of the plane F € E3. The enveloping surface of this moving plane is well known
to be a developable ruled surface, see [3, p. 195]. Generally, such a surface is a tangent surface
which is formed by the tangents of a twisted curve, the so-called line of regression. Its rulings are
the lines in which the two planes F(f) = M*(¢) - F and %F(t) = ¥(t) = M*(t) - F intersect. At any
instant ¢, the moving plane F(¢) and the developable surface have contact along the instantaneous
ruling, i.e., along the intersecting line of the plane F(¢) with the derivative plane F(t), see Figure 3.

The segment of the developable surface

M MOP,
M(t)

M) p ® Mm@

\ z

The face of the moving polyhedron

The derivative plane

The instantaneous ruling of the developable surface

Figure 3: The generation of a developable surface by a moving plane.

Recently, the application of the dual form of twisted curves to the design of developing surfaces has
been investigated by several authors [1, 24].

Of course, we are only interested in those segments of the developable surface which are enveloped
by the face pg,...,ps of the moving polyhedron. In order to compute these segments we have to
intersect the instantaneous ruling with the line segments between neighbouring corners of the face.
Let p; and p; be two neighbouring corners of the face. Then, at any instant ¢, the intersection of
the instantaneous ruling with the line through p; and p; is given by

i M(t)TM*(1)F

a; (1) =MO)((1 = ;) P; + 1i; P where i = : —. 25
(1) = M) (1 = s ;) Ps + pi P;) oy 5 — b, TM()TM()F (25)

The point a; ;(t) lies between p, and p; if the inequality 0 < p;; < 1is fulfilled. Note that a; ;(?)
describes a piecewise rational curve, therefore it is possible to find a B—spline representation of this

11
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curve.
Assume the face Py, ..., ps of the moving polyhedron to be convex. (Otherwise, the face should be
subdivided in convex segments.) Then, at any instant ¢, the instantaneous ruling of the developable
surface enveloped by F(?) intersects the boundaries of the face in at most 2 points. If two inter-
section points exist, the face envelopes a segment of the developable surface, and the line segment
between the intersection points is contained in this surface. Otherwise, the instantaneous ruling is
not contained in the boundary surface of the region traced out by the moving polyhedron.

The developable surface segments which are enveloped by the face py,...,ps of the moving poly-
hedron can be found with help of the following

Algorithm 2.
1. For all boundaries p,,p,; of the moving face:

Compute numerically those intervals of the time t, for which 0 < p;; < 1 holds, and store
them.

2. For all pairs p,,p; and p,p; of different boundaries:
Find the intervals of the time ¢, where the two inequalities 0 < p; ; <1 and 0 < pg; < 1 are
fulfilled. If [a,b] C R is such an interval, then the surface segment

x(s,t) = (1 — s)a; (1) + sag, (1) (s,1) €10,1] x [a,b] C IR? (26)

is a segment of the developable surface which is enveloped by the face.

In order to compute the intervals of interest in step 1 we have to find the roots of certain polynomials.
This should be done with help of appropriate methods from Numerical Analysis, e.g., using the
method of false position (Regula falsi).

The computation of the ruled surface segments which are generated by the edges of the moving
polyhedron is much easier than that of the developable surfaces. Consider an edge p,,p; of the
moving polyhedron. The parametric representation

y(s,0) = (L= s)M()p; + sM(1)B;  (s,1) €[0,1] x [to, t;] C R? (27)
describes the ruled surface segment which is obtained by moving the edge through the fixed space
E2.

Clearly, the developable surface segments (26) as well as the ruled surface segments (27) can be

described by rational B—spline surfaces. The following algorithm summarizes the computation of
the boundary surface of the region which is traced out by the moving polyhedron:

12
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Algorithm 3.
1. For all edges p;,p; of the moving polyhedron:
Compute the ruled surfaces which are generated by moving the edge through the fixed space
E?, see (27).
2. For all faces pg,...,p; of the polyhedron:

Compute the segments of developable surfaces which are enveloped by the moving face, see
Algorithm 2.

3. For each surface segment:
Compute all self intersection curves, for instance, by applying an appropriate subdivision
method (see [11], chapter 12.2). If necessary, remove those surface parts that are contained in
the interior of the region. Such surface parts can be detected approximately by searching for
intersections with a set of positions of the moving polyhedron. Note that the accuracy of this

computation depends on the number and distribution of the used positions.

4. For each pair of surface segments:

Compute their intersection curves and remove interior surface parts analogously to step 3.

Note that the intersection of two ruled surface segments (27) that are generated by intersecting
edges contains the trajectory of the intersection point. Further note that for an edge p;,p; of the
face pg,...,ps in F the corresponding generated surfaces have first order contact along the rational
curve a; ;(t) from (25).

As an example, Figure 4b shows the region which is traced out by the rational motion from Figure
4a of the unit cube. The developable surface segments are marked in white, whereas the remaining
ruled surface segments have been drawn in gray. The motion is illustrated with help of the control
and weight positions of the moving cube.

Remarks.

1. In this section we have developed a method for the computation of the boundary surface of
the region which is traced out by a moving polyhedron. As the main result, this surface
has proved to consist of segments of rational B—spline surfaces. It should be noted, however,
that the computation of the B—spline representations of these surface segments is relatively
complicated and expensive. In general we will obtain a large number of segments, and the
polynomial degree is relatively high. In most applications it should be sufficient to compute
the boundary surface pointwise and to approximate it, e.g., by a triangulation of the obtained
points. But it is always possible to find an exact B—spline representation of the boundary
surface.

2. The techniques presented in this section can easily be extended to the computation of surfaces
that are enveloped by moving rational developable surfaces. This also covers the important
subcases of a moving cylinder or cone which are of major importance in the tool path planning
of milling machines. For detailed information the reader is referred to [29].

13
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!
2

Segments of
ruled surfaces

Segments of Fs
developable surfaces

Trajectories of the
Fa corner points

Figure 4: A rational motion of order 6 (a) and the region which is traced out
by the moving unit cube (b)

4. Interpolation and optimization of rational B—spline motions

This section shows how to interpolate a certain set of positions of a moving object. The positions
are described by the corresponding Euclidean spatial displacements, and the resulting motion M

will be a rational B-spline motion of degree k.

14
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4.1 Interpolation

Let us consider n + 1 spatial displacements

1]0 0 0
| Vi1

P = v; R; (Vi=| w2 | € IR3)7 1=0,...,m, (28)
| V3.3

with given parameters ¢; € IR, {5 < 11 < ... < {,. According to Weiss[31] Euler’s parameters
€ =(e0€.1€2€3 )T of the orientational part of P; result from

€:.0 : €1 : €i.2 : €3 =
T+7riaat+
L. I Tia3—T; DTzl — Ty D Ti1a— T =
;29 + 733 2.2.3 2.3.2 2.3.1 2.1.3 2.1.2 2.2.1
T+ 7riaa—
ri2.3 — 132 Figg—1igs+ Til2ztTiza 1 TizitTils = (29)
l—=riiat
rizi—Triis 0 Tiiz tri2a Tigo—1igs+ Ti237+TTi32 =
T—ri11—

rilz—Tiza 0 Tiza+tTrias 0 Ti23+Tize Tig+ 7iaa

with R; = (7;;k)jk=1,2,3- Notice that at least one of the relationships from (29) yields a solution
different to 0 : 0 : 0 : 0. In the sequel we assume normalized Euler parameters ¢;, i.e. €, ¢; = 1.
Nevertheless note that the vectors €; are not unique since €; and —€; describe the same orientation.
For an optimal choice of the €;, consider the angle J(€;,€;4+1) between the vectors €; and €;41, which
is half of the angle of the continuous screw motion that maps the i¢th position onto the (i 4+ 1)st
position of E? (cf. [2]). In order to achieve a smooth motion interpolant, we therefore choose the
directions of the vectors €; such, that

€;.0€41.0 + €.1€41.1 + €.26,412 + €;36,413 >0, (30)

This guarantees, that the angles J(€;,&;41) are as small as possible.

We now construct a motion M = M(?) such that it satisfies the interpolation conditions
M(t;) = A2P; (i=0,...,n) (31)

with positive real factors A?. Moreover we assume ); > 0. These factors can be used as design
parameters. Figure 5 shows the influence of the A; to the motion interpolant. By increasing A;,
the interpolant is pulled towards the ith position. In general, it is sufficient to choose A; = 1
(i = 0,...,n). Nevertheless note that (31) does not guarantee that all weights of the resulting
motion interpolant are positive.

According to our assumptions the Euler parameters have to be piecewise rational functions of degree
[k/2], where [ ]| denote the Gaussian brackets. The simplest way to achieve this, is to interpolate
with a vector—valued B—spline function of degree [ = [k/2], i.e.

~ ~ n N » k
d=(dgdydyds)" =d(1)=> Nip ()T, &GeR', 1= H ; (32)
=0
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Figure 5: Rational B—spline motions of degree 4, which interpolate a given set of 3 positions P;

with given parameters {;. By increasing A{, the motion is pulled towards the position defined by
P;.

l P —
where the | F oo (j =0,...,n) are defined over the knot vector
Trot = (t07 .. '7t07 71,72, - - '7Tn—17tn7 .. -ytn)' (33)
—_——— ————
{4+ 1 times [+ 1 times

We choose (I + 1)-fold knots at the end of T,y in order to achive endpoint interpolation. On
the other hand the knots 7; are arbitrary, but have to satisfy the Schoenberg—Whitney conditions
with respect to the time parameters ¢; (see [21]). For instance, one can choose an appropriate
subsequence of the given parameter sequence ({;).

The remaining calculations are straightforward. First, (31) yields a system

n

~ i ~ .
A€ = Z LNj_Trot(ti) C; (’L =0,..., ’I”L) (34)
=0
of n 41 linear equations for the computation of the n + 1 coefficient vectors ¢;. In the second step,
one has to calculate the knot vector T of the motion interpolant. If all knots 7; are simple, i.e. if

7; < Tit+1, the function dis [ — 1 times continuously differentiable. In this case the B-splines NE.

(i=0,...,m) from (13) have to be C'~! continuous functions of degree k. Hence we get
T = (to,...,to, TlyeeosTl 5 T24...,72 ,...,Tn_[,...,Tn_l,tn,...,tn . (35)
—_——— —— ————
k+1 times k—1[+ 1 times kK — {4+ 1 times k—1+41times k+ 1 times
For the sake of simplicity we assume Ty = 1. With the use of the techniques presented in the

previous section one now is able to calculate the submatrices S; and the weights w; o of the

m41=(Fk-Dn-I+1)+n+1 (36)
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coefficient matrices A; of the motion (13). These calculations are independent of the choice of the
orientation of E? as well as of the orientation of E3. Tt might happen, that some of the weights are
negative. In this case, the motion interpolant does not fulfill the convex hull property with respect
to its control structure. If such a situation appears, one can change the design parameters A; to get
a better solution.

Finally, the translational part of M results from

APV =Y NEp(t)w; (i=0,...,n). (37)
=0

This yields an (m — n)-dimensional solution space of M.

Figure 6: Rational B—spline motions of degree 4, which interpolate a given set of 4 positions. In
the left example 1 is the center of gravity, which leads to a smoother motion interpolant.

For most applications in mechanics or computer graphics, it is useful to choose the origin u of the
moving system E? such that it has a special meaning for the moving object, e.g. is the center of
gravity. In this context, the trajectory of u should have minimum length. We propose to calculate
an optimal solution by minimizing the sum of the squared distances between neighbouring control

positions of u, i.e.

-1
m§: G- LW C . Min, (38)
— \Wjt+1.0 7 wjo 7

]:
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Consequently, the moving object is expected to stay within a certain minimum area, if U is the
center of gravity (cf. Figure 6). The minimization (38) leads to a system of m — n linear equations,
which in general yields a unique solution of M. All examples in this section have been calculated
with this approach.

Alternatively, another solution can be obtained by solving
k13
A Vi=) Nip (L)W (i=0,...,n) (39)
j=0

instead of (37), where the B—splines N]l-_Trot are defined over the knot vector Tyo¢. In this case, the
vectors W; (i = 0,...,m) result from the vectors W’ (j = 0,...,n) by elevating the degree of the

vector valued B—spline function

v(t) = Z ]VJl‘-Trot(t) Wi (40)

k — 1 times (see [18]).
Summing up, the presented interpolation scheme consists of three steps:

Algorithm 4.
1. Interpolate Euler’s parameters d; by solving (34). Therefore, choose the parameters A,

e.g. A = 1.
2. Calculate the weights w; ¢ and the submatrices S;.

3. Calculate the remaining entries of the matrices A; by solving (37) and the minimization (38).

Remarks.

1. If d(t) passes through the origin of IRY, i.e. if ||d(£*)||?> = 0 for some {* € [t;,1; + 1], the weight
function vo(t) = ||d(t)||?> has an at least quadratic factor with all entries of R(Z) from (1) in
common. In this case, the maximal degree of the rotational part of the ith motion segment
is 21 —2). If J(t) gets close to the origin of IR*, but does not pass, the interpolation scheme
produces undesired loops. These situations can be avoided if one chooses the design parameters
A; such that the resulting weight function vg(?) satisfies vo(¢*) = 1 for all t* € [tg, t,].

2. The interpolation scheme also applies to periodic motions. In this case one only has to choose
appropriate knot vectors Tyo¢ and T.

3. If the parameters ¢; are unknown, they can be estimated with help of the translational and
rotational parts of the displacements AP; := P14 -Pi_l. The displacement AP; maps the ith
position of the moving object onto the (¢4 1)st position. A list of different possibilities can be
found in [14]. The simplest way to estimate the parametrization is by choosing At; = t;11 —¢;
constant, e.g. Af; = 1. In order to estimate the parametrization independent of the choice
of the reference frames, one might choose At; =<(€;,&+1). Note that this is only possible if
J(&i,€41) # 0, i.e. if the displacement AP; does not represent a translation.
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Figure 7: Rational B—spline motion of degree 6, which interpolates a given set of 5 positions.

4. The presented interpolation methods for the translational part depend on the choice of the
origin of E3. Methods which are independent of the origin of E? could be based on Rath’s
mapping from Remark 3 of the previous section. Under this mapping, coordinate transforma-
tions in E? induce affine transformations in A'? that map ® onto itself. Analogously to affine
invariant methods in scattered data interpolation, which were introduced by Nielson (cf. [20]),
one could use an affine invariant metric in A'? for a minimization of the control polygon of
the image curve of M(?) instead of the Euclidean metric in (38). A slightly different approach
to origin—independent motion interpolation is discussed in [14]. Nevertheless, if the origin of
E3 has a special meaning to the moving object, which in general is the case, the result will be

better if one exploits this property.
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4.2 Rational motions satisfying energetic constraints

Till now, the moment of inertia and the mass of the moving object have not been considered in our
interpolation scheme. In the following we briefly outline how the resulting rational B-spline motion
can be modified such that it satisfies certain energetic constraints. We therefore assume that the
origin of the moving system is the center of mass of the moving object.

Consider one segment of the motion M(¢) which connects to consecutive positions M(¢;) and M(Z;41).
We want to replace this motion segment by a new segment obtained by solving the energetic

optimization problems

ti41 T o )
/ a'adt — Min (41)
t

and
rtit1 T o )

/t a'adt — Min (42)

where a = a(t) and @ = @(t) denote the acceleration of the origin and the angular acceleration of
the moving object, respectively. As boundary conditions, the motion M(#) has to interpolate the
positions, the velocities and the angular velocities of the moving object at ¢; and ¢;;.
Of course, the solution of the first variational problem (41) is well known: The trajectory of the
origin has to be the polynomial cubic curve which is obtained as Hermite interpolant of the segment
end points and of the velocities of the origin in these points. On the other hand, the exact solution
of (42) seems to be unknown. An approximate solution, however, can be obtained with help of
an appropriate optimization techniques from Numerical Analysis. Figure 8 shows the effect of the
optimization for a rational B—spline motion which consists of only one segment. The optimized
motion is denoted by M(t). For any details of our method we refer the reader to [15].

Conclusion

Using rational B-spline motions it is possible to apply many of the fundamental techniques of
Computer Aided Geometric Design to problems from Kinematics and Robotics. As an important
advantage, the use of rational motions supports the data exchange with CAD systems: sweeping
surfaces, surfaces enveloped by moving planes and surfaces enveloped by moving developable sur-
faces including cylinders or cones are rational B-spline (NURBS) surfaces.

Due to space limitations it was not possible to focus on every detail. Some methods for motion
interpolation based on rational dual quaternion curves have been derived in [14, 15]. A geometric
discussion of rational motions and approximation techniques can be found in [15], methods for the
construction of rational sweeping surfaces of arbitrary degree in [15, 16]. The approximation algo-
rithm presented in [15] has been used in order to approximate the motion of a human knee joint in
[17]. Algorithms for interactive design of rational B-spline motions and methods for the calculation
of enveloping surfaces of moving developable surfaces have been developed in [29]. This thesis also
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The original motion M(t) he optimized motion M(?)

Figure 8: Optimization of a rational B—spline motion.

studies the special case of planar rational B—spline motions.

Nevertheless there still exist a lot of open questions. Most important seems to be to find an intrinsic
control structure of rational B—spline motions which allows interactive motion design. Currently,
the lack of interactivity turns out to be the major drawback of this approach, especially if one wants
to apply rational B—spline motions to different tasks in Computer Animation. Other possibilities for
future research are the contruction of obstacle avoiding motions, the generalization of subdivision
schemes to rational motion splines, automatic fairing of position sets, optimized motion design for
milling machines, or the design of rational motions under dynamic constraints. Finally we would
like to mention that a modified version of the interpolation algorithm presented in this paper is
currently subject of investigation for the motion control of industrial robots [10].
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Appendix: Computing one segment of a rational B—spline motion

Applying Bohm’s algorithm to the B-spline functions %o(¢), ¥(¢), and J(t) we get the Bernstein—
Bézier representation

k—21

=3 By, 9 =3 BE )9,
=0 =0

l
and dU Z B crl'(]

1=0

(43)

with \_/’Z(-j) = (vZ(jl) vZ(JZ) 7)2(3)) and (2(]) = (dz(JO) . dz(g )T of their polynomial segments, where each
segment {; < t < ;41 is represented with respect to the local parameter 7 = (¢ — ¢;)/(tj41 — t;).
Hereby, BY(7) = (2) 77(1 — 7)P~9 denotes the g—th Bernstein polynomial of degree p. We therefore
obtain from (5) the jth segment of the spline motion M(?), i.e

K3

MO ()= 3 B (r) AV (44)
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