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Abstract: We give an outline of several methods for the construction and modification of paramet-
ric spline curves and surfaces. These methods are based on the use of linearized convexity conditions.
With the help of a so—called reference curve or surface it is possible to find data—dependent systems
of linear inequalities for the control points which imply the desired convexity properties. As a con-
sequence, several problems of shape—preserving curve or surface construction and modification can
be formulated as optimization problems with linear constraints.

1 Introduction

Variational Design of curves and surfaces has become one of the standard techniques of
Computer Aided Geometric Design. One of its origins is the conference article [5] article
by Hagen and Schulze. In this volume, the paper by Greiner gives a survey of the various
methods of variational design.

As the basic idea of variational design, a curve or surface is constructed by minimizing
a suitable energy (or fairness) functional subject to certain side—conditions, e.g. interpo-
lation or approximation of given data. Ideally one would like to choose highly non-linear
functionals like the elastic bending energy
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of a planar parametric curve. The use of such exact non—linear functionals, however, leads
to optimization problems which are relatively difficult to deal with. For this reason, many
methods rely on simpler functionals like the linearized bending energy
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These functionals lead to quadratic functions of the spline coefficients / control points. For
instance, if E5 is to be minimized subject to interpolation conditions, then the optimal
curve or surface can easily be found by solving a system of linear equations.

An interesting method has been proposed by Greiner [4]. With the help of a reference curve
(or surface) he constructs a quadratic data—dependent functional which approximates the
exact thin—plate energy of a surface. Based on a similar data—dependent linearization tech-
nique, Kobbelt [13] has developed an efficient interpolatory subdivision scheme which pro-
duces fair surfaces. As the major advantage of these data—dependent quadratic functionals,
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the approximate minimization of the non—linear fairness measures becomes accessible for
numerical computations, even if the number of data comes up to the order which is needed
in applications.

The methods of variational design are particularly well suited for generating fair curves
and surfaces. One the other hand, in many applications there is an increasing need for
creating curves and surfaces which are subject to shape constraints like convexity. For
instance, in reverse engineering a CAD model of an object is to be (re-) constructed from
a cloud of measurement data [6, 16]. A typical strategy consists of two steps. After a rough
segmentation of the data according to certain geometric features, several surface patches
are fitted to the individual segments. In order to improve the result of the second step it
can be crucial to use additional knowledge on the convexity of the surface patches. See
Figure 2 of [8] for an illustration.

In the case of parametric curves or surfaces, the exact convexity constraints are highly
non-linear and they produce optimization problems which are rather difficult to deal with.
In the sequel we give an outline of linearization techniques for various shape constraints
and their application. We discuss convexity of planar parametric curves and of parametric
surface patches.

Note that the linearization technique has some common features with the above-mentioned
work by Greiner and Kobbelt [4, 13] on data-dependent “fairness” or “energy” function-
als. In the sequel we discuss data—dependent linear approximations of non—linear shape
constraints. Whereas the details of the linearization techniques have been described else-
where, in this paper we focus on the general idea and we give some additional geometric
interpretations.

2 Curve fitting with convex parametric spline curves

A method for shape—preserving least—squares approximation of planar data with planar
polynomial spline curves has been developed in [9], see also [8] for an outline of the scheme.
It produces a parametric B—spline curve of degree d,

x(t) = i N&(t) d;, t € [to, 1] C R, (3)
=0

with the control points d; € IR? and the B-spline basis functions N (t) (see [7]), which
approximates given planar data (p,);=o,...» With associated parameters 7; € [to,#1]. These
parameters can be estimated from the data [7]. The approximation is to satisfy shape
constraints of the type

2

d d
det(a x(t), FTe) x(t)) >0 or <0 for certain intervals ¢ € [tq,tp] C [to,%1].(4)

That is, for certain segments one can specify the curvature sign of the curve.

In the sequel we give an additional geometric interpretation of the method. The expected
shape of the approximating curve is described by the so—called reference curve. This curve
specifies both the desired inflections of the curve and the expected curvature signs. It
is used for generating a system of linear inequalities which guarantee the desired shape.
The construction is based on bounding wedges for the first and second derivative vectors,
see [9] for details. Note that the linearized shape constraints depend on the data, because
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F(D) = constant

Fig. 1 A schematic illustration of the shape—preserving curve fitting scheme.

the reference curve is data—dependent. Thus, our construction is an analogue to Greiner’s
construction of data-dependent energy functionals.

Figure 1 gives a schematic illustration of the method. The planar parametric spline curves
which have the specified inflections and curvature signs form a certain subset €2 of the real
linear space ]RQ(m‘H), where the coordinates of the points D are obtained by collecting the
B-spline coefficients,

D=(dgd; ... dm). (5)

The reference curve corresponds to a point Dg of this space. The linearized shape constraints
describe a polyhedron IT C Q which is circumscribed to the reference curve Dy. As shown
in [9], under certain assumptions made about the reference curve, it is always possible to
construct such a circumscribed polyhedron.

With the help of the linearized convexity constraints, the task of shape—preserving curve
fitting can be formulated as a quadratic programming problem: a quadratic objective func-
tion is to be minimized subject to linear constraints. The objective function can be chosen
as a combination of the least squares sum with a weighted smoothing term, e.g.,

n
x(7;) — p —I—w/ 2dt 6
D) = Y lx(r) ~p,lF +u |, (R (6)

with the weight w > 0. There exists a number of fast and efficient algorithms for solving
optimization problems of this type, see [2, 15]. A schematic illustration is again given in
Figure 1 where the objective function F(D) is visualized by its level curves.

After a first solution has been computed, the whole procedure can be iterated in order
to obtain better results. By using the first results as a new reference curve one obtains
linearized shape constraints which are better adapted to the data. Simultaneously one may
insert knots (that is, add degrees of freedom) in order to improve the approximation result.
Typically after a few iterations one gets the desired result.

A quadratic—programming based approach to shape—preserving curve fitting with spline
functions has been developed by Dierckx [1]. Our method can be seen as a generalization
of Dierckx’ scheme to the parametric setting.
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3 Linearized convexity conditions for parametric surfaces

As outlined in the preceding section, linear sufficient convexity conditions for polynomial
parametric spline curves can be derived with the help of bounding wedges for the first
and second derivative vectors of the curve. These bounding wedges guarantee, that the
second derivative vectors always “point to the same side of the tangent”. This implies local
convexity of the curve. If the tangent of the curve does not vary too much, then local
convexity implies global convexity.

This idea can be applied to parametric surface patches. For example, consider a parametric
tensor—product Bézier surface patch of degree (m,n)

x(u,v) = ZZ B["(u) B} (v) b, (u,v) € [0,1)?, (7)

i=0 j=0

with the control points b; ; € R3, see [7]. The partial derivative vectors of this surface patch
are governed by certain difference vectors of the control points. Unlike the curve case, now
one has to deal with a system of second directional derivative vectors,
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=0
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with respect to all directions (¢,1) € IR? \ {(0,0)}. If all these vectors “point to the same
side of the tangent plane”, that is, if either

x"(u,v,&,1) - (xu(u,v) X xy(u,v)) >0 or <0 (9)

holds for all (u,v) € [0,1]%, (£,1) € IR?, then the Bézier surface patch is guaranteed to be
locally convex. Note that multiplying the right—hand side of (9) with the normalizing factor
1/||xy X Xy|| would produce nothing but the second fundamental form of the surface patch,
see [7] or any textbook on differential geometry. Thus, the inequalities (9) guarantee that
the surface has either non—negative or non—positive normal curvatures.

In order to find a sufficient system of linear inequalities we proceed as follows:

e Step 1. Choose bounding polyhedral cones for the control nets of the first derivative
vectors x, and x,, see Figure 2 for an illustration. This leads to linear inequalities for the
components of the Bézier control points b; ;. Simultaneously, under suitable assumptions
about the bounding cones of the first derivatives, one gets another bounding polyhedral
cone for the normal vector x, X x,. That is, the normal vector is guaranteed to be a
non-negative linear combination of certain bounding vectors (y)x=o,... p,

P
Xy (U, v) X Xy (u,v) = Z A (u,v) T with  Ag(u,v) > 0. (10)
k=0

The bounding vectors (ry)x—o,..., define the feasible region for the second directional deriva-
tive vectors, see Figure 2. If the inequalities

x"(u,v,&,m) - >0 or <0, k=0,...,p, (11)

are satisfied, then the Bézier surface patch is guaranteed to be locally convex.
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Fig. 2 Linearized convexity conditions for parametric surfaces.

e Step 2. Choose a parameterization of the directions (£,7n) of the second directional
derivatives. In fact, it suffices to guarantee the inequalities (11) for a subset D C IR?
provided that this subset spans the plane IR%. That is, we guarantee (11) for all (¢,7) € D,
where RD = R2.

One may simply choose D as the union D = |JI_, D, of suitable line segments

D,={((Q=t)6_1+t&, A=) n_1+tn ) |t€[0,1]}, r=1,...,q, (12

see Figure 3 for an illustration. For the r—th line segment we obtain from (8) the second
directional derivatives

x"(u,v,...) = (1= )% cro(u,v) + 2t (1 —t) cp1(u,v) + 12 crou,v) (13)
with

Cr,0 = 572-—1 Xy + 2fr—l Mr—1 Xyp + 773_1 Xov,
Cr1 = Er—1&r Xuu + (gr—l N+ &r 771"—1) Xuv + Mr—17Mr Xou and (14)
Cr2 = fz Xyu + 2 &0 N Xyy + 777% Xy -

Fig. 3 Parameterization of the directions (£,n) of the second directional derivatives.
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These coefficients are vector-valued polynomials of degree < (m,n). They have a tensor—
product representation (cf. (7)) with certain control points (d,; ;)i=o,....m;j=0,..n (" =
1,...,9, 1 =0,...,2). These control points are certain linear combinations of the Bézier
control points b; ;.

If the control points d,; ; satisfy the linear inequalities
drg;j-T >0 or <0 (k=0,...,p) (15)

then the second directional derivative vectors are contained within the feasible region, see
Figure 2. Hence, under this assumption, the Bézier surface patch is guaranteed to be locally
convex.

These two steps lead to a system of linear sufficient convexity conditions for parametric
Bézier surfaces. In our implementation, both the bounding polyhedral cones for the first
derivative vectors and the parametrization of the directions (£,7n) of the second directional
derivatives are chosen with the help of a strongly convex reference surface, see [11] for
details. As in the curve case we get a system of data—dependent linear inequalities for the
Bézier coefficients b; ;.

As observed in [11], the linearized convexity conditions can be adapted to any strongly
convex Bézier surface patch. For this adaptation, however, one may need to subdivide the
surface into several segments.

Once again, Figure 1 may serve as a schematic illustration of the method. The convex
parametric Bézier surfaces form a certain subset Q of the real linear space IR3(m+1(n+1)
where the coordinates of the points are obtained by collecting the Bézier control points. The
strongly convex surfaces correspond to a point Dy of this space. The linearized convexity
constraints describe a polyhedron II C Q which is circumscribed to Dy. From this point
of view, the existence of linear sufficient convexity conditions is rather obvious; each inner
point of ©Q has a circumscribed polyhedron. The main difficulty, however, is caused by
the relatively complicated structure of the set 2. It is shown in [11] that the linearization
procedure is compatible with the structure of ).

Based on the above linearization procedure, a method for fitting convex parametric Bézier
surfaces to scattered data has been developed in [12]. The control points of the Bézier
patch are found by minimizing the least—squares sum subject to the linearized convexity
conditions. This method generalizes the curve fitting algorithm from [9] to the case of
parametric surfaces. In the initial step of the method, one has to find a strongly convex
reference surface. The reference surface is constructed by minimizing another quadratic
functional without constraints. This quadratic functional is a weighted linear combination
of a suitable tension term and the least—squares sum.

In many cases of practical interest, convex shapes can be described by spline functions
rather than parametric surfaces. The above linearization procedure can be used in order to
find linearized convexity conditions for piecewise tensor—product polynomials too. In this
(much simpler) case, the first step is omitted; the second step can be applied to the second
directional derivatives. The details of the linearized convexity conditions, and their applica-
tion to shape—preserving surface fitting are discussed in the forthcoming article [10]. Unlike
the parametric case, the convex piecewise polynomial tensor—product functions form a con-
vex cone, as a positive linear combination of two convex functions is again guaranteed to
be convex. As observed in [10], the linearized convexity conditions are able to approximate
the set of convex tensor—product polynomials as good as desired.
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4 Convexity—preserving modification of convex surfaces

In this section we describe an application of the linear sufficient convexity conditions. A
convex (or at least partly convex) parametric Bézier or B-spline surface patch is assumed
to be given. During the process of surface design, the user may wish to modify this sur-
face patch. For instance, he may pick a number of points on the surface and specify new
positions for them. In addition, certain boundary conditions (e.g. boundary curves and
cross—derivatives) are given. Moreover, the modification is to preserve the convexity of the
surface.

This type of surface modification has been discussed by Schichtel in his Ph.D. thesis [14]. He
dubbed this process the convexity—preserving “lifting” of a surface patch. With the help of
the above linearization procedure we develop an optimization—based approach to convexity—
preserving surface modification which in many cases works better than Schichtel’s methods.
Firstly we use the initial surface as a reference surface and we generate a data—dependent
system of linear sufficient convexity conditions. An outline of this procedure has been given
in the preceding section. Secondly we choose a suitable quadratic or linear objective function
which reflects the intended surface modification. For instance, one may use the sum of the
squared distances between the initial surface points and their desired conditions. Now, the
control points of the modified surface patch result from linear or quadratic programming,
as outlined in Section 2. Once again, Figure 1 provides a schematic illustration of the lifting
scheme.

As an example, consider the convex Bézier surface patch of degree (6,6) which is shown
in Figure 4e. The ellipses in the figure visualize the distribution of the normal curvatures.
Whereas the principal diameters are the principal curvature directions, the length of the
diameters is chosen proportional to the principal curvatures. As a consequence, the area
of the ellipses represents the Gaussian curvature. The initial surface was used in order to
generate linear sufficient convexity conditions. The procedure from the preceding section
led to a system of 1196 inequalities. As we imposed C'! boundary conditions along the two
boundaries in the background, only 75 of components of control points were free for the
optimization. The Figures 4a and c¢ show the surface patches which are obtained after the
left corner has been pulled downwards and upwards, both times subject to the linearized
convexity conditions. The Gaussian curvatures of the modified surface patches have been
plotted in Figures 4b and d. For both modifications, the optimization using LOQO [15] took
approximately 5 seconds of CPU time on a HP 715/64 workstation. This example illustrates
the flexibility of the linearized convexity constraints. In between the two extreme shapes,
the linearized convexity conditions offer a broad spectrum of feasible convex surfaces.

In our numerical experiments, the above algorithm for convexity—preserving surface mod-
ification led to very good results provided that the initial surface was relatively far away
from having parabolic points. In the latter cases, however, the linearization procedure can
produce a large number of inequalities, as a large number of subdivisions (both of the di-
rections in the parameter domain and of the surface patch) may be required. In addition,
the linearized constraints can then be fairly restrictive, and the set of feasible surfaces
may get too small for the intended modification. It these cases the use of non-linear shape
constraints might be more appropriate. Such constraints are described in the contribution
by Kaklis and Koras to this volume. Of course one has to use much more sophisticated
methods for the numerical optimization.
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Fig. 4 Convexity preserving surface modification.
The initial surface (e), after lifting it down-
wards (a) and upwards (c) and the Gaussian
curvature distribution (b,d) of the modified
surfaces. The ellipses visualize the distribu-
tion of the normal curvature.
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5 Concluding remarks

In this article we have outlined techniques for generating linear sufficient convexity con-
ditions, both for planar parametric spline curves and for parametric Bézier and B-spline
surface patch. In addition, we described their application to the shape—preserving construc-
tion and modification of parametric curves and surfaces.

As a common feature of the linearization techniques, they lead to a data—dependent system
of linear inequalities which guarantee the desired shape properties. That is, we are able
to replace the non—linear exact shape constraints with suitable linear inequalities. Then,
in many examples, an approximate solution to the problem can be found in a reasonable
amount of computing time. Of course, the quality of the result heavily depends on the
reference curve or surface which is used in the linearization procedure.

The above linearization techniques can be applied to other types of shape constraints also.
Spline surfaces with convex level curves z = constant have been studied in [8]. Based on
the linear sufficient convexity conditions one can formulate methods for interpolation and
approximation of given data by such surfaces.

Finally, one may easily derive linearization techniques for so—called range constraints, see [3]
or the article by Schmidt in this volume. For a subset of the parameter domain, the curve
(or surface) is requested to lie on one side of a given line (or plane). This can easily be
guaranteed by introducing feasible regions for the control points of a parametric curve or
surface. In addition, by using artificial subdivisions (that is, we insert new knots of the

B-spline representation, without introducing new degrees of freedom) we are able to find
weaker constraints.

‘.

(a) (b) (c)

Fig. 5 Least—squares approximation of planar data (a) with (b) and without (c) range constraints.

An example is shown in Figure 5. The data (a) are approximated by a planar parametric
spline curve. The unconstrained approximation (c) has a lot of unwanted oscillations. The
constrained approximation (b) has been computed after introducing range constraints. In
its horizontal regions, the curve is restricted to a narrow rectangle along the data.
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