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Abstract: We present a two—stage approach for the construction of surfaces from contour data.
At first the contour curves are found using an algorithm for shape preserving least—square ap-
proximation of planar data by polynomial parametric spline curves. The obtained curves are then
interpolated by tensor—product B—spline surfaces. The interpolation scheme used in the second step
preserves the signs of the sectional curvature of the contours.

1 Introduction

Methods for the construction of surfaces from contour data are required in several applica-
tions of Computer Aided Geometric Design. These applications include the design of ship
hulls, or also the reconstruction of bone surfaces in medical imaging. References to related
literature can be found in the survey articles [13, 14]. As one of the possible approaches,
such methods can be composed from two parts. At first, the contour curves of the desired
surface are generated from the data. The contours are then interpolated in order to obtain
the desired surface. We are particularly interested in methods which preserve the shape of
the data as far as possible.

An algorithm for shape preserving least—square approximation of planar data by polynomial
parametric spline curves is discussed in the first part of the present paper. It can be used
for constructing the contour curves of the surface from the given data. Whereas shape
preserving interpolation by parametric curves has been discussed in a number of papers
(see the references cited in [9, pp. 103, 105, 114], see [7] for space curves), the corresponding
approximation problem has not been considered so far. Even in the case of functional data,
only the method proposed by Dierckx [2, 3] seems to be available. In Dierckx’ method least—
square approximation by cubic spline functions is formulated as a quadratic programming
problem. Our approach generalizes this idea to the case of polynomial parametric spline
curves. The desired shape of the approximating spline curve is specified with the help of
a reference curve which is used in order to generate linear sufficient shape constraints.
The control points of the approximating curve result by solving a quadratic programming
problem.

After the contour curves have been obtained, the desired surface is to be found by interpo-
lating them in the second step. In order to preserve the shape of the given data we use the
notion of sectional curvature preserving interpolation which has been introduced by Kaklis
and Ginnis [12]. Their approach to achieve this property is based on piecewise polynomial
surfaces of non—uniform degree, whereby the degrees of the segments act as tension param-
eters. In contrast with this, we guarantee the desired shape with the help of appropriate
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linear constraints. The control points of the interpolating surface are then found by solving
a simple optimization problem.

2 Approximation of planar data

In this section we describe a method for approximating a sequence of points by a B—spline
curve satisfying some shape constraints. More precisely, the desired inflection points and
the curvature signs of the spline segments in between can be specified. In order to be
brief, we give an outline of the basic ideas of our approach only. For more details of the
approximation scheme the reader is referred to [10].

2.1 Problem statement

Let a sequence of P+ 1 points (p;)io,....p in the plane IR? with associated parameter values
(ti)i=o,..., p satisfying ¢; < t;11 be given. If the parameters ¢; are unknown yet, then they can
be estimated from the data, cf. [9, pp. 201/202]. Additionally, the K + 1 knots (7;)i=o,...
of the approximating spline curve are assumed to be known (7; < 741, 79 = to, Tk = tp).
Some of the knots are marked as the desired inflections of the spline curve. They are denoted
by (Tw(i))i=1,..,w—1 where w(i) < w(i +1). Additionally we set w(0) = 0 and w(W) = K.
Finally, the curvature signs o; € {+1,—1} of the spline segment ¢ € [7,,3), Ty(i+1)] have
to be specified. Of course, the curvature signs of adjacent segments should be different:
0i- 0541 = —1.

The given data is to be approximated by a C! B-spline curve (I = 1,2) of degree d (d > [),

D
x(t) =>_ d;-N{(t) te€[n,x] (1)
=0

(D=d-k— (k—1)-1) with the unknown control points (d;);jo,..,p in IR?. The B-spline
basis functions (de(t)) j=0,..,p are defined over the knot vector

(TOy e s TOy TlyeensTly T2eees T2 wenw TR—lyeeyTK—1y TKy«-yTK)- (2)
—_——— — — — — ~ ~ RN ~ .
d+1 times d—1 times d — [ times d — [ times d + 1 times

For more information concerning B—spline curves we refer the reader to the textbooks [4, 9].
The construction described below will ensure that the approximating spline curve (1) pos-
sesses inflection points only for ¢t = 7,,;) (i = 1,..., W—1). The curvature sign of the spline
segments ¢ € [T, (;), Tw(i+1)] in between will be equal to the specified value o; (i = 1,..., W).

2.2 The method

The construction of the spline curve consists of three steps. At first, we construct a reference
curve which possesses the specified inflection points and curvature signs. With the help of
this curve we then generate an appropriate set of linear constraints ensuring the desired
shape properties. Finally, the control points of the approximating curve are found by solving
a constrained optimization problem.
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(1) Construction of the reference curve

The reference curve y(t) is chosen as a C' B-spline curve of degree [ + 1 which possesses
the desired shape. Two possible construction of the reference curve are described in [10].
For the first construction we prescribe the direction vectors of the legs of the B—spline
control polygon, whereas the lengths are found by minimizing the least—square sum. The
directions of the legs which correspond to spline segments having constant curvature signs
result from uniform rotations, This ensures the desired shape properties.

For the second construction we use a B—spline curve which is defined over an appropriate
subset of the knot sequence (7;);=o,...,x. The curve is found by least-square approximation
of the data. Its knots are chosen such that no undesired inflections occur. This is achieved
by systematically deleting knots from the original knot sequence.

Whereas the first construction is guaranteed to yield a curve which has the desired shape
properties, the second construction only ensures that no undesired inflections occur. But
in most cases of practical interest the result of the second construction can be expected
to have also the desired curvature signs. The second construction generally yields a better
approximation of the data than the first one, and its result is more suitable for the following
constructions.

In the case of C? spline curves (I = 2), the construction of the reference curve additionally
ensures that X(7,(;)) = 0 holds for all inflection knots, ¢ = 1,..., W — 1. This is necessary
for the generation of the shape constraints in the second step.

In order to find a representation which is defined over the specified knot vector (2), the
degree of the reference curve is elevated from [ 4+ 1 to d.

(1) Generation of linear shape constraints

The generation of the linear constraints ensuring the desired curvature distribution is based
on the following observation:

Lemma. Consider a Bézier curve y(t) of degree d with control points (b;)io,. 4 in R?
(see [9, p. 120]). If two vectors u,v € R? \ {0} ezist such that the 4d — 2 inequalities !

[d, Alb;] >0 [Alb;, ¥] >0 (i=0,...,d—1)
[V,A%b;] >0 (resp. <0) [A%b;,—d] >0 (resp. <0) (i=0,...,d—2)

for the first and second differences vectors A'b; = b;; 1 — b; and A?b; = A'b;;; — Alb;
of the control points hold, then the curve segment t € [0,1] is conver and the curvature is
non—negative (resp. non—positive).

The conditions of the Lemma ensure that the wedges spanned by the first and second
difference vectors of the control points can be separated as shown in Figure 1. The first
and second derivatives of the curve are contained in these wedges, hence the curve has
non-negative (resp. non—positive) curvature.

As shown in [10], any Bézier curve with non—positive (resp. non—negative) curvature can
be subdivided into a finite number of segments such that the convexity of the segments can
be guaranteed with the help of the above linear inequalities. This also applies to curves
with vanishing curvature at the segment end points ¢y = 0 or 1, provided that the second

!The abbreviation [.,.] denotes the exterior product [8, ﬂ = s1-t2 — 82 - t1 of two vectors §,t € IR2.
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Fig. 1 Convexity conditions for a quartic Bézier curve.

derivative at the segment end points vanishes, y(to) = 0, and [y(to), ¥(t0)] > 0 (resp. < 0)
holds. This is important for the generation of convexity constraints in the presence of
desired inflection points.

Based on these observations, an algorithm has been formulated in [10] which generates a
set of linear sufficient convexity constraints with the help of the reference curve. It yields
two (possibly empty) sets of inequalities Z and equalities £ for the components of the
unknown control points (d;);=o,...p- In order to generate these constraints, the reference
curve is subdivided into an appropriate number of subsegments, and then the vectors d
and Vv occurring in (3) are computed from the bounds of the wedges spanned by the first
and second differences of the resulting control points.

(141) Computing the curve

The unknown control points of the approximating B—spline curve (1) are found by mini-
mizing the least—square sum

P
F(do,...,dp) =) [x(t:) — ps]? (4)
i=0

subject to the linear shape constraints Z and £. This quadratic programming problem (see
[1]) is solved using the method of active set as described in [5]. The control points of the
reference curve serve as initial point for the optimization.

As most algorithms for solving quadratic programming problems have difficulties with
degenerate situations, it is of crucial importance to avoid redundancies of the sets of con-
straints as far as possible, see [10].

In most applications, the number of data points can be expected to be much bigger than
the number D of B—spline control points, and also the distribution of the parameters ¢; over
the spline segments will be more or less uniform. Then the quadratic part of the function
(4) is positively definite, and therefore the solution of the quadratic programming problem
will be unique. Otherwise it is possible to add a “tension term” (cf. [9, p. 98] in order to
achieve regularity.

If the approximating curve obtained from the quadratic programming is not satisfying,
then the whole procedure can be iterated. New linear shape constraints can be generated
by using the first curve as the new reference curve. This should yield constraints which are
more suitable for the approximation of the given data.
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2.3 Examples

In this section we will illustrate the capabilities of our method by an example. We computed
two sets each consisting of 8 cubic C? B-spline curves (defined over appropriate knot
vectors) which approximate the 296 data points (marked by crosses) of Figure 2. The

(a)

W

Fig. 2 Shape—preserving least—square approximation. The approximating curves
have been computed (a) without constraints, (b) with shape constraints.

curves in Figure 2a have been computed without any shape constraints. In contrast with
this, the curves in Figure 2b have been obtained after two iterations of the above—described
method. In order to analyze the shape of the curves, the normals of the spline curves have
been drawn (thin black lines), whereby their magnitudes have been chosen proportional to
the curvature at the curve points.

3 Interpolation of the contour curves

Now we outline a method for constructing a surface by sectional curvature—preserving
interpolation of a given set of contour curves. A more detailed description of the scheme
will be presented in [11].

3.1 Problem statement

Let a sequence of C + 1 open contours (x;(t))i=o,...,c in IR? with associated z—coordinates
(heights) zy < 21 < ... < zc be given. Each contour is described by a C! B-spline curve

D;
xi(t) =Y diyj-N;(t) te0,1, i=0,...,C, (5)
=0



3 Interpolation of the contour curves 6

of degree d with D; + 1 control points (d;)j—o,..p, in IR?. The B-spline basis functions
(Ni‘fj(t)) j=0,..,n; of the i—th contour are defined over a certain knot vector 7;. The knot
vectors may be different, but they are assumed to have the (d + 1)—fold boundary knots 0
and 1. The construction described below is based on the following three assumptions.

(1) The matching problem (cf. [14]) has already been solved; points on adjacent contours
x;(t), x;+1(t) which share the parameter value ¢ correspond to each other.

(2) If a contour curves possesses inflections, then the parameters of the inflection points
are also knots of the spline curve. Moreover, in the C%case (I = 2) we have X;(ting) = 0
at these points. (Note that this assumption is automatically fulfilled if the contour curves
have been generated using the algorithm described in the first part of the paper.) No higher
order flat points of the contour curves are assumed to exist.

(3) The shape of the contour curves corresponds with the shape of the control polygons.
More precisely, if the curvature of a segment ¢ € [t,,t] of one of the contour curves x;(t)
has only non—negative (non—positive) values, then also the polygon formed by all control
points acting on this segment has only non-negative (non-—positive) angles between adjacent
difference vectors of control points. Additionally, these angles are smaller 2 than m/(d — 1).
The validity of this assumption can always be achieved by inserting additional knots.

We want to construct a C' spline surface y(z,t) with (¢,z) € [0,1] x [20, z¢] which interpo-
lates the given contour curves, i.e.,

y(zi,t) = x;(t) holds for  i=0,...,C. (6)

The interpolating surface is to preserve the shape of the given contour curves. Consider two
segments t € [tq,tp] C [0,1] of adjacent contours y(z;,t) = x;(t) and y(zit+1,t) = xi+1(t).
If the curvature of both segments has only non-negative (resp. non—positive) values, then
also the curvature of any interpolating contour segment y(z*,t) in between (z* € [z, zi+1]
is to be non-negative (resp. non—positive). If this assertion is true for all corresponding
segments of adjacent contours, then the interpolating surface is said to preserve the sectional

curvature of the data. This notion has been introduced by Kaklis and Ginnis [12].

3.2 Surface definition and continuity constraints

The interpolating surface is composed from tensor—product B—spline surfaces of degree
(d,n). Whereas d denotes the degree of the contour curves, the degree of the parameter
lines ¢ = const is equal to n > 2 -1+ 2. For z € [z;_1,2;], the interpolating surface is
described by

yi(z,t) = ZZ &i,j(z) . Ngj(t), (z,t) € [zi-1,2i] x [0,1], i=1,...,C. (7)
=0

The B-spline basis functions (]\Afi‘fj(t))jzo __p. are defined over the union of the knot vectors

7;_1 and Tz, see Figure 3. The D; + 1 control points of ((Aii,j (2)) b, of the interpolating

7=0,..

?Under this assumption, the number of inflections of the curve is bounded by the number of inflections
of the control polygon, see [6]. Of course, this also applies to any segment of the curves.
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t=20 t=1

z=2z |} } } | Knots of T;

Knots of the surface y;(z,t)

Z=z1| } } | Knots of 7;_1

Fig. 3 The knots of interpolating surface.

contours depend on the height z. They run along Bezier curves of degree n with parameter z,
n
dz,](z) = Z cz,j,kBl?(zzz__z;l—_ll) zZ € [Z’i*lazi]a J=0,...,D Z:]-a?C (8)
k=0

Their control points ¢; j; € IR* are unknown yet, whereas B (u) = (7)uf(1 —u)"~" are the
Bernstein polynomials.

From the interpolation conditions (6) we immediately obtain the boundary control points
(€i0)j=o...p, and (€Cijn);_o  p, of the surface defined by (7) and (8) with the help of
the knot insertion algorithm, cf. [9]. In addition, the surface has to fulfill the continuity

constraints
o\ o\
=) yi(zt =(—) yii(zt A=1,...,1, te0,1], 9
(52) wen | _ = (5;) ventet) | (ST
1 = 1,...,C — 1. The continuity constraints leads to a set of linear equations involving
the control points (ci,j,r)j:0 D and (ci+1,j,n_r)j:0 b T = 0,...,1. Note that the knot

vectors of adjacent spline surfaces y;(z,t) may be different. Thus, the continuity constraints
include certain not-a-knot-type conditions for the control points ¢; ;. Resulting from
n > 2 -1+ 2, each coefficient c; ; is subject to at most one set of constraints (9).

3.3 The method

The construction of the interpolating surface consists of three steps. At first we generate
sufficient linear constraints for preserving the sectional curvature of the contour curves.
Then we choose an appropriate quadratic objective function. In the last step we find an
initial point for the optimization and construct the control points of the surface by solving
a quadratic programming problem.

(7) Linear sufficient shape constraints

We consider one segment y,(z,t) of the interpolating surface. Resulting from the assump-
tions formulated in (3), it is sufficient to consider the shape of the control polygons of
the adjacent contour curves x;_1(t) = y;(zi—1,t) and x;(t) = y;(zi,t). If three successive

~

contour control points d; j(2), d; j+1(2), d; j4+2(2) (cf. Figure 4) satisfy the condition
[Qij1(=) = Aig(="), Qo) —digin(z) ] 20 (resp. < 0) (10)

for z* = z; 1 and z* = z;, then we want to ensure that this inequality is true for all
z* € [#i—1, z;]. (Note that the value of the left-hand side of the inequality for z* = z;_1 and
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+ Contour curve x;_1(t) Contour curve x;(t)
Ci,j,0

dij2(zi-1)

A~

d; j12(2)

Cij,1 =

Cij,2

Fig. 4 Three adjacent contour control points (n = 3).

z* = z; results from the interpolation of the given contours, cf. (6).) In addition to (10),

the contour control points are to fulfill

~ ~

—a1 <9 (digii(2) = dig(2), dijralz) — digia(z) ) < g5 for 2 € [z 1,2 (11)

because then the number of inflections of the contour curves is bounded by that of the
control polygon, see [6]. Similar to the construction outlined in Section 2.2(7%), it is possible
to derive linear sufficient constraints ensuring the inequalities (10) and (11), see [11].

(#4) An objective function

In addition to the constraints ensuring the desired shape of the contours we need an ap-
propriate objective function in order to compute the unknown control points c; ; of the
interpolating surface. We want to achieve that the transition between control polygons
of adjacent contours is as smooth as possible. So we construct the objective function by
summing up the terms

S
> |
r=0

for each pair of adjacent contour control points (Eli,j, ai,j+1)z‘:0 Dl (1=1,...,C), where-
by the S+ 1 (S large) points (q; ;,)r=o0,..,s are sampled equidistantly from the spiral with

2

[ai,j+1(S§T 21+ g %) — fii,j(SgT Zic1t g Zz)] —Qjr (12)

center O which interpolates the difference vectors ai,jﬂ(z*) —cAli,jH(z*) of adjacent contour
control points for z* = z; 1 and z* = z;. For the trajectories of the first and last control
point we add a “tension term” (cf. [9, p. 98]) like

2 2 .
[ I3z ds@l e Go=0.0) (13
to the objective function. Note that without this term the objective function would depend
only on difference vectors ¢; j11 — ¢; j of control points, and hence the minimum would
not be unique. The objective function is a quadratic functions of the components of the
unknown control points ¢; ; x-
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(731) Computing the control points

The control points ¢; j ; of the interpolating surface are found by minimizing the quadratic
objective function subject to the linear shape constraints obtained from step (i). This
quadratic programming problem is again solved with the help of the method of active set as
described in [5]. The initial solution is found using the simplex algorithm. It is advantageous
to start with an initial solution which is close to the minimum of the unconstrained objective
function, see [11].

The linear shape constraints obtained from the first step are not guaranteed to provide
feasible solutions. In most cases of practical interest the feasible region (in the linear space
of control points ¢; ;) will be non-empty. Moreover it can be shown that feasible solutions
always exist if the degree n of the parameter lines ¢ = const is chosen high enough [11].

34 An example

As an example we show in Figure 5 the interpolation of four given contour curves with
equidistant heights zg, ..., z3. The four given contours are described by quadratic B-spline
curves defined over different vectors. The degree of the three interpolating C' B-spline
surface patches y,(z,1),...,y3(2,t) is equal to (2, 3).

(a)

\

Fig. 5 Sectional curvature—preserving interpolation of four contours. The interpolating con-
trol polygons (a) and the contour curves (b).

The left figure shows the control polygons (?li,j(z) of the interpolating contours and the
control points c; ; ;, of their trajectories (in grey). The interpolating contour curves and the
control polygons of the four given contours (in grey) have been drawn in Figure 5b. The
thicker black lines in both figures indicate the given data.
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