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This paper is devoted to cubic Pythagorean hodo-
graph (PH) curves which enjoy a number of re-
markable properties, such as polynomial arc-length
function and existence of associated rational frames.
Firstly we derive a construction of such curves via
interpolation of G' Hermite boundary data with
Pythagorean hodograph cubics. Based on a thor-
ough discussion of the existence of solutions we for-
mulate an algorithm for approximately converting
arbitrary space curves into cubic PH splines, with
any desired accuracy. In the second part of the pa-
per we discuss applications to sweep surface model-
ing. With the help of the associated rational frames
of PH cubics we construct rational representations
of sweeping surfaces. We present sufficient crite-
ria ensuring G continuity of the sweeping surfaces.
The paper concludes with some remarks on offset
surfaces and rotation minimizing frames.
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INTRODUCTION

Pythagorean Hodograph* 3 (PH) curves are a spe-
cial class of polynomial curves. They are charac-
terized by the fact that their hodograph (that is,
their unit tangent vector 1_:') corresponds to a ra-

tional curve on the unit sphere. This fact entails
a number of nice properties. For instance, the arc
length of a PH curve is simply a polynomial function
of the curve parameter. Consequently, PH curves
can be used efficiently for the numerical control of
milling machines and industrial robots, where the
speed control is usually based on the arc length

6

of the trajectories®. Moreover, spatial PH curves

can be used for creating rational sweeping surfaces,
as each curve has an associated rational frame> 10,
Pythagorean hodograph curves have been studied
in a number of publications by Farouki and co-

authors® % 3.

A number of interpolation schemes
for PH curves is available. The majority of these
schemes, however, deals with planar data. Interpo-
lation of planar G! Hermite data with planar PH
quintics has been discussed by Farouki and Neff3.
A construction for planar C? PH spline curves from
point data has been developed by Albrecht and
Farouki'. Recently, Meek and Walton'* have dis-
cussed G' Hermite interpolation by planar PH cu-
bics.

In the spatial case, Farouki and Sakkalis® de-
scribe a scheme for Hermite interpolation of C!
boundary data (points + first derivatives) with PH
quintics. Wagner and Ravani'” have developed a
method for matching spatial G' Hermite bound-
ary data (points + tangents) with PH space cubics.
Their approach is based on certain geometric prop-
erties of the Bézier control polygon of PH space cu-
bics which were revealed by Farouki and Sakkalis.
The analysis of the existence of solutions, and of
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their behaviour, however, is still somewhat incom-
plete. It is one of the aims of this paper to fill this
gap.

In the first part of the paper we present another
approach to Hermite interpolation of G' boundary
data with spatial PH cubics. The hodographs of
the PH curves are constructed at first; they describe
quadratic rational curves on the unit sphere. Using
a simple representation of the possible hodographs
we obtain a characterization of feasible G' Hermite
data for interpolation with PH cubics; the difference
vector of the segment end points has to be contained
within a certain quadratic cone which depends solely
on the tangent vectors. As a consequence from this
characterization of feasible data it is shown, that any
space curve can be approximated by a G' cubic PH
spline curve (i.e., a piecewise cubic PH curve whose
segments are joined with continuous tangents) as
accurately as desired, provided that the number of
segments is chosen big enough. For the convenience
of the reader, we provide a summary the G* Hermite

interpolation scheme by Wagner and Ravani'”

, as it
may facilitate the implementation of the method.

In the second part of the paper we discuss the
application of cubic PH spline curves to sweep sur-
face modeling. We present a sufficient condition for
G! spline surface and we investigate criteria that
guarantee that the offsets of a sweeping surface are
generated by the offset curves of the profile curve.
We conclude with some comments concerning the
rational approximation of the rotation minimizing
frame.

BUILDING PH SPLINES

This section is devoted to Pythagorean—hodograph
(PH) cubics. We discuss the approximate conver-
sion of arbitrary space curves into a cubic PH spline
curves.

PH cubics in space

Consider a cubic Bézier curve

x(t) = ibi B(t), te]o,1], (1)
=0

with the control points b; € IR3, see Reference 9.
This curve is called a Pythagorean hodograph (PH)

cubic®, if the components i;(t) of the first deriva-
tive vector x(t) = (d/dt) x(t) satisfy the Diophan-
tine equation

&1(t)? 4 2o(t)% + 23(1)? = p(t)?

(2)

That is, the
quadratic polynomials %1, 2, £3 and p form a

for some real polynomial p = p(t).

Pythagorean quadruple in the polynomial ring IR][t].

The following geometric characterization of PH
cubics has been derived Farouki and Sakkalis®. Con-
sider the difference vectors Ab; = b; — b;_1 and let
0; ; be the angle between the vectors Ab; and Ab;.
Moreover, let 9 be the angle between Ab; x Aby
and Abg x Abs. The Bézier curve (1) is a PH cubic
if and only if the control points satisfy the conditions

213

0
1,2 TiLs

)

=0o3

k]

-1

and cos®y = (3)

with L; = ||Ab;||. These conditions entail the fol-
lowing formulas for the parametric speed o(t) =
|%(t)|| and for curvature and torsion of PH cubics:

o(t) =3 (L1 B2(t) + Ly cos0 B2(t) + Ly Bg(t)) ,

. 6L2|sin91,2|
o

. -3 L1 L3 SiIl’(/)

h:(t) T(t) - LQO’(t)Q

The ratio x/7 is constant, hence any PH cubic is a
curve of constant slope (also called a cubic heliz). A
thorough geometrical discussion of cubic and quar-
tic curves with constant slope has been given by
Wunderlich'®.

The Frenet—frame of a PH cubic is formed by
the unit tangent t = x(t)/o(t), combined with the
normal and binormal vectors

o(t) %(t) — o(t) %x(¢)
6 Ly |sin®; o] o(t) ’

x(t) x %(t)
6 Lo | sin 6 2| o(t)
(4)
Clearly, the three vectors are quadratic rational

b=

n=—

functions of the curve parameter ¢; they describe
three circles on the unit sphere. The spherical
part of the motion of the Frenet frame (which
is given by the special orthogonal matrix U(t) =
(£(t) () b(t) )) is simply a rotation with constant
axis, but varying angular velocity. PH cubics are one
of the simplest representatives of curves with ratio-
nal Frenet—Serret motion, the so called RF—curves.
These curves have been studied recently by Wagner

and Ravanil’.
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In the remainder of this section we derive an-
other characterization for PH cubics. It will be used
later for discussing the existence of solutions for Her-
mite interpolation of G' boundary data.

We choose an adapted coordinate system, as fol-
Let tg = Ab;/L; and t; = Abs/Ls be
the unit tangent vectors of the cubic (1) at ¢ = 0
and t = 1.
(resp. z—) axis of the coordinate system as the bi-

lows.
We choose the direction of the z—

sector (resp. normal) of the tangent vectors to, ti.
Then, the unit tangents to, t1 have the coordinates

()

with s = sin¢, ¢ = cos ¢, where 2¢ = 6,3 is the

to=(0sc)’ and t1=(0-s¢)’

angle between £t and t;.

Lemma 1. Let x be the first derivative vector of
a PH cubic with the boundary tangents (5). Then
there exist parameters A\, v, w € RU{oo} such that

As

x(t) = v? B3(t)to —vw B}(t) | 0
1

+w? (1 4+ A\?) B3(t) t1.

(6)

Remark. The above representation uses parame-
ters from the extended real line IR U {oo} in order
to include the limiting case A — oo with w A — w
(w € R), hence w — 0. In this case the representa-
tion (6) becomes

+ 0> B%(t) €1 ;

(7)
the unit tangents x(¢)/p(t) form a semicircle on the
unit sphere, running from to to t1.

Proof. Let

p(t) =qBi(t) + 1 Bi(t) + @2 B3(t)  (8)

with go = v?, ¢ = —vwc and ¢z = w? (1 + A%). A
short computation confirms that the components of
x(t) satisfy the equation (2).

On the other hand, if the derivative vector of
a PH cubic is given, then there exists a polynomial
p(t) such that %(t)/p(t) is a quadratic rational curve
on the unit sphere (i.e., a circular arc) which runs

from €y to t;. From (6) and (8) we obtain the ra-
tional Bézier curve

1 0Bi(t)t+ 1 BI() G + ¢ B3 (1) t
q0 B§(t) + q1 B (t) + g2 B3(t)

(9)
with the middle control point q; = (As/c 0 1/c)T
which describes such a circular arc. Some of these
arcs running from £y to t; have been drawn in Fig-
ure 1.

middle control point
d; =4q;())

upper half of
the unit sphere

Figure 1: The normalized hodographs
ﬁi{(t) in the standard representation (9).

All possible Bézier representations of these circu-
lar arcs can be obtained from the representation (9)
by choosing the parameters A, v, and w. This can
be seen as follows. Firstly, the middle control point
can be adjusted by choosing the parameter }; it can
be moved to any position along the line in which
the tangent planes of the unit sphere at to and t;
intersect. In the limit A — oo, the middle control
point becomes a point at infinity, hence the tangent
vectors form a semicircle on the unit sphere.

Secondly, the parameters v, w can be used to
generate all possible normalizations and parameter-
izations. Note that only positive boundary weights
qo and g9 are possible, as the PH cubic is assumed

]

Remark. The representation (6) has been con-

to have the boundary unit tangents to and t;.

structed by applying the generalized stereographic
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projection? § to the system of line segments

1—c 1-c 0

0 0 -
wBy(t) | [+wBlO(| _ |+r] ]

0 0 1—c

t € [0,1]. Here, these line segments are described as
linear Bézier curves in so—called homogeneous co-
ordinates. Due to space limitations we cannot dis-
cuss more details of this construction; the interested
reader should consult Reference 2.

The real parameters v and w will be referred to as
the weights of the hodograph x(t).
the length of the derivative vector, and also the dis-

They control

tribution of the parameter ¢ along the circular arc

x(t)/p(t)-

the shape of the hodograph; it specifies which one

The parameter )\, by contrast, controls

of the circular arcs running from to to t; is taken.

Proposition 2. Consider a PH cubic (1) with the
boundary tangents (5). Then there exist parameters
A, v, w € RU{oo}, such that the control points are
given by the expressions

0 —swA
b; = bo—l—% v s ], by= bo—l—%v V8 ,
c v e—w
—VSwWA

and by =bg+3 s (—w?+v?—w? \?)
w? N2 c4+v? c+w? c—v w
(10)

The first control point by is arbitrary.

Remark. As in the preceding lemma we use pa-
rameters v, w, A from the extended real line in or-
der to include the limit case A — oo, with w A — w
(w € IR), hence w — 0, where one gets the control

points

—VSswWw
s (vV2—w?)
w2 ct+v?c
(11)

These control points can easily be found

—sw

b, :bo—l—%’u VS ,b3:b0+%

vce

Proof.
by integrating the hodograph (6). The first control

[]
With the help of this result we give a thorough dis-

point by serves as the integration constant.

cussion of the existence of solutions for Hermite in-
terpolation of G' boundary data by PH cubics.

G! Hermite interpolation

Consider the following interpolation problem. Given
the points py, p; € IR? and the associated unit tan-
gent vectors ty, t; € IR?, find an interpolating PH
cubic. That is, the PH cubic (1) is to satisfy

—

x(0) = py, x(1) = py, x(0) = &oto, and x(1) = &t [l

with some positive real constants &y, £&;. Without
loss of generality one may assume that the given
unit tangent vectors have the standard form (5).
Moreover, we will assume that the angle between
the tangents is smaller than 27/3, i.e. ¢ < 7/3.

Clearly, 27r/3 = 120° is a relatively large angle
between the given tangents; it is therefore unrealis-
tic in most applications. Hence it is well justified to
concentrate on the case ¢ < m/3. Later we will de-
scribe a method for converting a given space curve
into a PH cubic spline curve via G* Hermite interpo-
lation. In this application, the assumption ¢ < 7/3
can always be made true by taking more and more
sample points.

As the given unit tangents are assumed to be in
standard form, we can apply Proposition 2. Clearly,
the PH cubic with the control points (10) matches
the boundary unit tangents to and £, provided that
both weights v, w are non—zero. The first interpo-
lation condition x(0) = p, is satisfied by choosing
by = py- Hence, if the weights v and w and the
parameter A are chosen so that the three non—linear
equations

—% svwA
2 s (—w?+v?—w?)?)
2 (w? A2 c+v? ctw? c—wv)

P1—Po = b3—by =

= G(v,w, )

(12)

are satisfied, then the control points of the interpo-

ting PH cubic can be found from Proposition 2.

he solution(s) of the system (12) will be called

gular if v,w # 0. In the limit case A — oo reg-

ular solutions are characterized by v,w # 0. Let

d=(didyd3)T =p, — Py be the difference vector
of the given data.

Theorem 3. The system (12) has ezactly two reg-
ular real solutions (possibly including the limit case
A — 00, Aw — w) if the components of the differ-
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ence vector d satisfy the inequalities

D=4(1-4c)d2+ (1 —-4c)do® +452d3? >0
and d3 >0

(13)
provided that d is neither linearly dependent on t,
nor on t1. If D = 0 holds, or if the difference vec-
tor is linearly dependent on one of the given unit
tangents to, t1, then there exists ezactly one reqular
real solution. Finally, if D < 0 or dg <0, then the
system has no regqular real solutions.

Proof.
sented by

(an) = (5(1 _t) \/'?_’7 £t\/§)
or (v,w)=(E(1—1)V3,—EtV3)
with ¢ € [0,1], & € IR. The first resp. second formula

vw < 0.
In Figure 2, the above substitution is visualized by

Any pair of weights (v, w) can be repre-

(14)

applies to weights with vw > 0 resp.

some lines ¢ = constant and ¢ = constant in the
vw-plane. The dotted resp. dashed lines correspond
to the first (vw > 0) resp. to the second (vw < 0)
substitution. The factor v/3 has been introduced in
order to keep the formulas in the sequel as simple

as possible.
t=1
w-axis

w <0

Figure 2: Weight representation, see Eq. (14).

Consider the feasible difference vectors
q(v,w, A), see (12) for some constant A\. With the
help of the above weight representation we obtain

E2F1(t, \)
& Fa(t, \)

if vw>0
d(v,w,\) = (15)

otherwise,

where T /5(t, A) are the two quadratic Bézier curves

SA
0
1

+ B3(t) (14 M)ty

with parameter ¢ € [0,1]. For A # 0, both curves lie
on either side of the yz—plane. For certain values of
¢ and A, both curves and their control polygons are
shown in Figure 3.

(1+ M)t
z- (ds-) axis

curve r1(t, A) (solid)
and control polygon
(dashed)

cone C(A), see (17)

%, curve r2(t, \) (solid)

Cand control polygon

(dashed)
z- (d1-) axis

y- (d2-) axis

Figure 3: The cone of feasible difference vec-
tors for ¢ = 54° and A = —1.5.

Owing to (15), the set of feasible difference vec-
tors is the collection of rays emanating from the ori-
gin which are spanned by the system of curves 1, rs
for A varying in IR U {oo}. (See the above remarks
concerning the limiting case A — 00.) It can easily
be seen that both curves belong to the half space
z >0 as ¢ < m/3 was assumed. Hence the feasible
difference vectors satisfy the condition ds > 0.

Both curves (16) satisfy the equation

i, ) CFi(t,A) =0; i=1,2,
with the 3 X 3—matrix
4 + 4202 -1 0 SA
C(\) = 0 cA\? 0
SA 0 —52)2

Hence, for any constant value A\ = Ay with A\g # 0,
the feasible difference vectors form the upper half
(d3 > 0) of the quadratic cone

d c()d=o, (17)
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curve rz(t,0) (solid)
and control polygon
(dashed)

to

wedge of feasible
vectors

curve r1(t,0) (solid) *\ ’
and control polygon % | .
(dashed) X

y- (d2-) axis

Figure 4: The case A = 0.

see again Figure 3, where this cone has been drawn
as far as it is contained within the sphere with ra-
dius 2. Clearly, the rays spanned by the two curves
T1/2(t, Ao) cover the whole upper half of the cone
(17), as both curves lie on either side of the yz—,
but on the same side of the xy—plane. The equation
of the cone (17) has been constructed by implicit-
izing the expression q(v,w, ) with respect to the
weights v, w, cf. 9.

In the case \g = 0 both curves ¥/y(¢,0) be-
long to the yz—plane. This situation is illustrated
by Figure 4. The set of feasible vectors is the wedge
which is bounded by the tangents to r; (¢,0) passing
through the origin. A short calculation leads to the
directions of these extreme rays,

(0 +2s Va2 —1)".

If X varies in IR U {o0}, then the upper halves of

(18)

the quadratic cones (17) and the wedge obtained
for A\¢g = 0 form the set of all points which sat-
isfy the conditions D > 0 and d3 > 0, cf. (13).
This can be seen as follows. An arbitrary vector
d= (dy do d3)7 which is not contained in the yz—
plane (i.e. di # 0) belongs to one of the cones (17),
if and only if the quadratic equation d'c (Ad=0
for the parameter A has got real solutions. Fac-
toring the discriminant of this quadratic equation
immediately gives the condition D > 0. Moreover,
the intersection of the yz—plane with the quadratic
cone D = 0 produces exactly the wedge of feasible
difference vectors for A = 0, cf. (18). Hence, the
feasible difference vectors d = (d; ds ds ) satisfy the
conditions D > 0 and d3 > 0.

We conclude the proof by discussing the number
of regular solutions.

Case 1. If d is not contained in the yz—plane
and D > 0 holds, then (17) has two solutions

A1, A2 # 0, hence we get two solutions (A1, vy, w:)
and (Ag, v, ws). (If the left—hand side of (17) degen-
erates into a linear (resp. constant) expression, then
A = oo is to be considered as a single (resp. dou-
ble) root.) The weights v;, w; associated with the
solutions A; can be found by intersecting the ray
spanned by d with the curves Fi)o(t,A), = 1,2,
t € [0,1]. For each \j, exactly one of both curve
segments intersects the ray. The scaling factor &2
can then be chosen so that the PH cubic matches
the given difference vector d. Note that the param-
eters (\, v, +w) produce the same PH cubic. Fi-
nally, both solutions are guaranteed to be regular,
as w = 0 (resp. v = 0) entails linear dependency of
dand t; (resp. t2). This, however, is impossible as
d was assumed to be outside of the yz—plane.

Case 2. If d is not contained in the yz—plane and
D = 0 holds, then (17) has only one solution A = Xy.
The same arguments as in the first case prove that
this solution leads to exactly one regular interpolat-
ing PH cubic.

Case 3. If d is contained in the yz—plane, then
regular solutions can only be obtained from A = 0.
(Solutions with A # 0 are only possible, if d is lin-
early dependent on t; or to. In both cases, however,
one would get solutions with either v = 0 or w = 0.)
The number of regular solutions with A = 0 can be
seen from Figure 4 by counting the number of in-
tersections of the ray spanned by d with the curves
Fi/5(t,0). Intersections at the segment boundaries
of both curves (¢t = 0 or ¢ = 1) correspond to degen-
erate solutions (cf. (14)), but intersections at the
interior yield regular ones. If D > 0 holds and d
is neither linearly dependent on t; nor on to, then
there exist two regular solutions. If D = 0, or if dis
either linearly dependent on ﬁ or on Eg, then there

]

Finally we outline a geometric interpretation of the

exists only one regular solution.

above result. Consider the family of quadratic cones
(17) with the parameter A € R U {oco}. It is visu-
alized in Figure 5. Instead of the quadratic cones
themselves, we have simply drawn the spherical
curves (thin black lines) which are obtained by in-
tersecting them with the unit sphere. For A # 0
this produces oval curves; A = 0 gives a circular arc.
All curves (hence all the cones (17)) pass through
the given tangent directions to, t; (shown as dotted
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z- (ds-) axis

y- (d2-) axis

z- (d1-) axis

Figure 5: The quadratic cone D = 0 is en-
veloped by the family of cones (17).

lines). The quadratic cone D = 0 is the envelope
of the family (17). It can clearly be seen from the
figure that the family of cones covers the whole in-
terior of the cone D = 0; hence difference vectors
with D > 0 and d3 > 0 admit solutions of the G!
Hermite interpolation problem.

Summing up, if the difference vector belongs to
the interior of the quadratic cone D, then regular
real solution to the G' Hermite interpolation prob-
lem are guaranteed to exist. The quadratic cone
depends solely on the given tangent directions EO,
t1. The rays spanned by the tangent directions are
contained within the cone D.

Computing the solutions

The solutions of the G! Hermite interpolation could
be computed via the non-linear system (12)'°. For
the implementation it may be easier to use an alter-
native approach developed by Wagner and Ravani'”.
The following algorithm is equivalent to their formu-

las:

e SYNOPSIS.
with spatial PH cubics.

Geometric Hermite interpolation

1. INPUT: Boundary Bézier points p, = by, p; =
b3 and associated unit tangents Eo, El.

2. mq = (E() . El)El — E'(), mo = El — (Eo . €1) i?o

m; - (bz — by) m; - (bg — by)
my - tg my - tq

3. )\1 = , )\2 =

4. ni1 :=bg + Algl, ns := bg + /\21?1
5. Solve the quadratic equation

X21 +E() 'El
2
_ 2|y —my|?
1—tp-t
(19)

(IAi] = X)(|Az| = X) — 4

for the unknown X.

6. OUTPUT: Inner Bézier points (2 solutions) b; =
n; — Xy pt0, ba=ny+ X ot

The algorithm computes the unknown Bézier points
b; and bs of the PH cubic to given Hermite data.
Note that the quadratic equation (19) does not al-
ways have real solutions. Also, even if real solutions
X1/2 exist, it may happen that the interpolating PH
cubic matches the unit tangents ty, t; with the op-
posite orientation. Finally, if real solutions with the
correct orientation at the boundaries exist, then one
will get two different solutions in general, owing to
the possibly different roots of (19). One should then
pick the solutions with the shorter control polygon.

In the original paper by Wagner and Ravani'?,
the questions of solvability and suitability of the so-
lutions have not been discussed in much detail. As
observed there, real solutions to (19) are guaran-
teed to exist provided that the angle between the
given unit tangents is bigger than 27/3. This situ-
ation is rather unrealistic situation in applications.
However, even in this case it is not clear whether the
solutions will match the given tangent data with the
desired orientation.

Necessary and sufficient criteria for the existence
of regular real solutions having the desired orienta-
tion are provided by Theorem 3. In order to apply
this result, however, the given unit tangents have
to be converted into the standard form (5). In the
next section we discuss the approximate conversion
of space curves into cubic PH splines via the above
G'! Hermite interpolation procedure. Also, we will
discuss the behaviour of the two different solutions.

Approximate conversion of space curves

Consider a given space curve segment p = p(t) with
the parameter ¢ varying in the interval [0, S]. One
may assume that the parameter ¢ is the arc length of
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the curve, ie. ||[£(t)|| = |p(t)|| = 1 holds, see Refer-
ence 13. With the help of the above G' Hermite in-
terpolation procedure, we want to approximate the
given curve with a sequence of PH cubics. Firstly,
for a given stepsize A = S/N, we generate a se-
quence of points p(i A) with associated unit tangent
vectors £(i A), i = 0,...,N. Secondly, we apply the
above—described Hermite interpolation procedure to
each pair of adjacent G' Hermite data p(i A), (i A)
and p( (i+1) A),t((i4+1) A). If the assumptions of
Theorem 3 are satisfied for each segment, then this
leads to a PH cubic spline curve. In the sequel we
discuss the following question.

Is it always possible to convert the given curve p(t)
into a cubic PH spline with any desired accuracy via
G' Hermite interpolation?

In order to answer this question, one has to dis-
cuss the asymptotic behaviour of the solutions to
the Hermite interpolation problem for A — 0. We
consider the given curve in a neighbourhood of a
point p(tp). Under suitable assumptions about its
differentiability, the curve can be represented by its
canonical Taylor expansion

(t—to) — § K& (t—t0)> + ...

3 Ko (t—t0) + g K1 (t—t0)> + ...
% Ko To (t—t0)3 +...

p(t) =

which results from the well-known Frenet formulas,
see any textbook on differential geometry'®. Here,
the origin of the coordinate system is at p(ty), the
p1—axis is spanned by t(fg), and the p;po—plane is
the osculating plane of the curve at p(¢g). The co-
efficients k;, 7; are the derivatives of curvature and
torsion at t = tg,
d' d’
ki = ——=K(t and T, = —7(t
i = h(t) . i = 5T »

The curve points p(tg), p(to + A) with the associ-
ated unit tangent vectors t(ty), t(to + A) are to be
interpolated with a PH cubic.

Firstly, in order to apply the formulas from the
previous section, we have to transform the data into
the local coordinate system. Its zi—axis (resp. x3—
axis) has the direction t(tg) x t(tg+A) (resp. t(to) +
t(to +A)). With the help of computer algebra tools
one gets Taylor expansions for ¢ = cos ¢, s = sin ¢,
and for the components of the difference vector d=

p(to + A) — p(tp) of the segment end points:
c=1—§r{A? - fror1 A3+ ...,
SZ%KOA—i—%mA?
+L (ko — L homd — T R3) A+ ..,
di =
do =
d3=A— 3 kA3 + . ..

1 3
EK,()T()A +...,

%mA?’—I—... and

Now we can check whether the conditions of The-
orem 3 become true if the stepsize A converges to
zero. QObviously, the second condition ds > 0 gets
true for sufficiently small stepsize A. On the other
hand, the left-hand side of the first inequality from

(13) has the Taylor expansion

D = I<.:()2A4 + Ko K1 AP + (—%K&OZTOQ

—%Iﬁ‘,o4 + %mz + %ﬁo ko) A8+ ..

(20)
If the curve has non-zero curvature at p(to)
(i.e., ko # 0), then this expression is guaranteed to
be positive for sufficiently small stepsize A. We give
a brief geometric interpretation of this fact. Con-
sider the angle between the difference vector d and
the z—axis of the local coordinate system. It can
be shown to converge quadratically to zero. On the
other hand, consider the apex angles (there are two
extreme apex angles, as the cone is not a circular
one) of the quadratic cone D = 0 (see Figure 5)
of the feasible difference vectors. Both apex angles
converge linearly to zero for A — 0. Thus, if the
stepsize is small enough, then the cone of feasible
vectors is guaranteed to contain the difference vector
of the data. For more details the reader is referred
to 10.

Now we consider the case k9 = 0. That is, the
original curve has got an inflection or a flat point at
t = to. Similar to the previous case, we consider the
Taylor expansion of the left-hand side of the first
inequality (13). This leads to %KJ12A6 +.... Thus,
even in this case we are guaranteed to find real solu-
tions, provided that the stepsize is sufficiently small.
We presume (and this is supported by our numerical
experiments) that this fact applies to arbitrary space
curves. For the proof of this conjecture one would
simply have to consider the higher order terms of
the Taylor expansion (20).

If the input curve is given as a parametric cubic
spline curve (which is of course a standard repre-
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sentation in CAD systems), then input curves with
both k9 = k1 = 0 can be shown to be segments of
straight lines. That is, the G' interpolation proce-
dure is guaranteed to be successful for cubic splines
as input curves, provided that the stepsize is suffi-
ciently small.

Next we summarize some results concerning the
asymptotic behaviour of the solutions for decreasing
stepsize A — 0. For more details the reader should
consult Reference 10. If the stepsize is sufficiently
small, then the G' interpolation procedure will pro-
duce two different solutions. Their control points
can be represented as

by = p(to), b1 =p(to) + 1, t(to),
by = p(to-{-A)—lz,i E(t()—l-A), and bg = p(t()—{-A),

1 = 1,2, with certain lengths 1 ;, I ;. If we use the
first solution (the one with the short control poly-
gon, see the previous section), then both lengths can
be shown to be asymptotically equal to I11 =l =
(1/3)A + .... For this solution, the length of the
spherical curve (9) which is formed by the unit tan-
gent vectors of the interpolating PH cubic tends to
zero. For decreasing stepsize A — 0, the first solu-
tion converges to the solution of C! Hermite inter-
polation with standard cubic Bézier curves, where
the given curve p(t) is parameterized with respect
to its arc length.

For the second solution, by contrast, we get
11,2 = 12,2 =A+...
the spherical curve (9) which is formed by the unit

In this case, the length of

tangent vectors converges to 2m. The first solution
is to be preferred, as the shape of the resulting spline
curves is much better.

The asymptotic behaviour of both solutions is
depicted in Figure 6. The original curve segment has
been drawn in grey. The solid (resp. dashed) curve
show the cubic Bézier curve which is obtained from
the first (resp. second) solution of the G' Hermite
interpolation problem.

o< -- -- --- -=250

Figure 6: Asymptotic behaviour of the two
solutions (schematic).

For each point p(tg) of the given curve we can

find a maximum stepsize Apax(to), such that the so-
lution to the Hermite interpolation problem with the
point and tangent data p(ty), p(to + A) and t(tp),
t(to + A) exists for any stepsize A € [0, Amax (to)]-
Clearly, the maximum stepsize at each point is pos-
itive. Hence there exists a global lower bound A
for the maximum stepsize, as we are dealing with a
curve segment of finite length S. Summing up, we
have the following result:

Consider a given curve segment p(t), t € [0,S] of
finite length which is sufficiently often differentiable
or which is a collection of segments which are suffi-
ciently often differentiable. (The latter assumption
is satisfied by the curve representations of CAD sys-
tems.) With the help of G' Hermite interpolation
with PH cubics as described in the previous section,
this curve can be approximately converted into a
PH cubic spline curve. By increasing the number of
segments, the approximation can be made as highly
accurate as desired.

For practical implementations, one should use an
adaptive choice of the stepsize, in order to keep the
number of segments as small as possible. This is
described in the following algorithm (see also the
remarks below).

e SYNOPSIS.
curve into a PH cubic spline curve.

Approximate conversion of a space

1. INPUT. Original curve p(t), parameterized by its
arc-length (||p(¢)|| = 1); tolerance e.

2. Find all points with vanishing curvature x(t) =
ID(?)|| and split the curve into segments with
non—zero curvature in the interior. Apply step 3
to all these segments.

3. Conversion of a curve segment p(¢), with ¢t €
[to,t1] C [0, S].

3.1 Apply the G' Hermite interpolation proce-
dure (see previous section) to the boundary
data py = p(to), p; = p(t1) with tangents
to = p(to), t1 = p(t1)-

Check whether the PH cubic obtained from
the previous step approximates the original

3.2

curve with the desired accuracy. If yes: re-
turn. Otherwise: split the curve into halves
t € [to, 23] and ¢ € ["F ;] and apply
step 3 to both segments.
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4. OUuTPUT. Sequence of cubic PH curves, forming
a G! spline curve.

Remarks. Step 1. Clearly, the original curve will
almost never be given by its arc—length parameter-
ization. However, in order to get a geometrically
invariant conversion procedure (which does not de-
pend on the parameterization of the input curve),
the original curve should (at least approximately)
be parameterized by its arc length. Recently, an
efficient algorithm for computing the arc length of

Bézier curves has been developed by Gravesen’.

Step 2. Splitting the curve at points with vanishing
curvature is not required in order to guarantee the
existence of solutions, but it will improve the shape
of the resulting PH spline curve; it avoids PH cubics
whose unit tangents form a circular arc with a large
vertex angle. For true space curves it is very un-
likely to find points with vanishing curvature. This,
however, is very different in the planar case, where
those points (inflections or flat points) may occur

quite frequently.

Step 3.2. The check for the accuracy of the approx-

imation has to be done numerically as well. For

instance, the maximum of the function

|[(#)

gives an upper bound for the distance error between

—p(to (1 —t)+tat)|l, t€l0,1],

the curve p(t) and the approximating PH cubic x(¢).

An illustration of the output of the algorithm — to-
gether with a generated sweeping surface — is pro-
vided in the final section of the paper (Figure 8).
The above conversion procedure generalizes an
interpolation scheme by Meek and Walton'# to the
spatial situation. In the planar case it has been
shown'® that the error behaves asymptotically like
O(A%).

ize the error analysis to the spatial case, due to the

So far we have not succeeded to general-

more complex formulas for computing the solutions.
This will be a matter of future research.

SURFACE APPLICATIONS

A main advantage of PH curves is that they pos-
sess rational frames® 0. This property can be used
to derive exact rational parameter representations
of sweeping surfaces and skinning surfaces, to de-
scribe rational motions in robotics, or for the gener-
alized cylinder technique in computer animation. In

this section we will discuss rational representations
and properties of sweeping surfaces with a cubic PH
spine curve.

Rational frames of PH cubics

A moving frame of a space curve x(t) can be defined
with the orthogonal unit vectors {f;(t), f2(¢), f3(¢)}.
We assume that £ (¢) := x(¢)/||%(¢)|| is the unit tan-
gent vector of the spine curve x(t). Therefore f5(t)
and f3(¢) span the normal plane of x(¢). It is con-
venient to describe the frame vectors in relation to
the Frenet frame as

t) =
t) =
where the normal and the binormal of the cubic are

Substituting w(t) = tan(2(¢)/2) we
obtain a rational frame representation

fy (t)
fy (21)

given by (4).

o 2wl e 1w
) = 1 +w2(t) B0+ 1) 1+ w?(t) i(t)
B = om0 - Ufg)(t) (1) (22)

of degree 2(1+mn), where n is the degree of the
polynomial or rational function w(¢). A planar
(at least G'-continuous) cross section curve c(s) =

(c1(s), c2(s)”

x(t) defines a rational sweeping surface
s(s,t) = x(t) + B(¢) o1

of degree (m,2n+35).

of degree m in the normal plane of

(5) + B(¢) ca(s)  (23)

Continuity of sweeping surfaces

If two PH cubics x (¢) and x*(¢) , ¢t € [0,1] are
x7(0), the cor-
responding sweeping surface patches s™(s,t) and
sT(s,t) s,t € [0,1] should be G'-continuous along
s™(s,1) = sT(s,0),
too. In order to guarantee G'-continuity, we derive

joined G'-continuous at x~(1) =

there common boundary curve

a sufficient condition for the functions Q(¢) and w(t).
Firstly we consider the continuity of the frame
vectors fy and f3. The conditions

£, ()=50,5 =5 (0

describe the G°-continuity. In order to obtain G'-
continuity, the frame vectors have to satisfy the

10
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equations

d=- d 2+ d=— d 2+

—f, (1 — f —f; (1 — f

dt2() udtQ(O)’dts() Hd 3 (0),
(24)

with an arbitrary constant u # 0. Generally, the
Frenet frame of a cubic PH spline is not G°! We
will describe the relation between the Frenet frames
at the joint boundary of two PH cubics with

sind b (1) + cosd i (1)
cosd b (1) —sind & (1).

(25)

Now we formulate the continuity conditions for the

frame vectors.

Theorem 4. The frame vectors f;-_ and f;-+ (i =
2,3) of two G'-continuous PH cubics x~(t) and
xt(t) are joined G°-continuous if the angle func-
tions Q™ (t) and Q7 (t) satisfy

Q- (1)

They are G'-continuous if additionally the relation

=Q7(0) + 0. (26)

[7(0) o (0)+27(0)] o (1) & (1) cos (1)
[77(1) o~ (1)+27(1)] a7 (0) T (0) cos QT (0)

(27)
is fulfilled.

Proof.
frame vector fp; the G-condition (26) can be ob-

It is sufficient to prove the result for the

tained directly by combining the equations (21) and

(25

d - .
= f2(t) = —k(t) cos Q(t)x(t)

+[7(t)]|x(2) ||+Q(t)] [cos Q(t)B(t)— sin Q(¢)1i(t)]
(28)

)- Using

the boundary derivatives can be rewritten as

d

- f, (1) = -k (1)cos Q™ (1)x~(1)
+[r (Do~ (1) + 27(1)]
X[cos Q™ (1)b (1) —sin Q= (1)d (1)]
d

= £,7(0) = —k+(0) cos QT (0)xT(0)
+[rT(0)a(0) + 27(0)]
X[cos Q™ (1)b (1) —sin Q= (1)d (1)]

Hence,
k(1) cos Q7 (1) 0 (1) = uk™(0) cos Q"‘(O)'a*'(())
77(1) o™ (1) + Q7 (1) = p[r+(0) o+ (0) + 27 (0)].

11

The relation (27) is now obtained by eliminating the
[

The G'-continuity of the frame vectors guarantees

parameter p.

the G'-continuity of the trajectories of the corre-
sponding sweeping surface and therefore the G'-
continuity of the sweeping surface itself. Substitut-
ing w(t) = tan(2(t)/2) we may formulate the fol-
lowing sufficient G'-condition for rational sweeping
surfaces:

Corollary 5. Let s™(s,t) and s*(s,t) s,t € [0,1]
be two rational sweeping surface patches of the form
(23), with G'-continuous spine curves x(t) and
xT(t) t € [0,1]. If the functions w™(t) and w(t)
in (22) satisfy the equations

2arctan(w™ (1)) = 2arctan(w™ (0)) +6,  (29)
[7F(0) o (0)(1 +w™(0)?) + 2™ (0 )2]2

o~ ()~ (1)(1 +w™(1)%)
W 4w ) +20- )

o (0) s (0)(1+w+(0) )%,

then the patches are joined G*-continuous along the
curve s~ (s,1) = s1(s,0). In particular, the isopara-
metric curves s=const. are G'-continuous.

If the boundary data w~ (1) and w™(1) of the left
segment are given, the corresponding boundary data
w*(0) and ™' (0) can be computed via the linear
equations (29) and (30). For w(t) = const. in each
interval the rational sweeping surface is generated
with a frame parallel to the Frenet frame and has
the degree (m,5). Since (30) is not always satisfied,
the sweeping surface is in general along the segment
boundaries just G°-continuous (see Figure 7, top).
In order to built a G'-continuous sweeping surface
one needs an at least piecewise linear function w(t).
In this case we obtain patches of degree (m,7) (see
Figure 7, bottom).

Offsetting
The offset surface s, of a surface is defined as

N(s, t)

Y jeR.
IN(s, 2)|

So(s,t) =s(s,t) +d
The main problem in using the offset operation is,
that it does not preserve the rationality of a sur-
face. In the case of planar curves there exist several
publications which are devoted to rational curves
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Figure 7: Rational sweeping surfaces with
GO and G'-continuity along the segment
boundaries.

with rational offsets, see Reference 15 and the ref-
erences cited therein. The construction of rational
surfaces with rational offsets, however, is more dif-
ficult, and a lot of problems are still unsolved. We
discuss briefly the sweeping surfaces whose offsets
can be generated as sweeping surface of the offsets
of their cross section curves.

Theorem 6. Let c,(s) be the offset curve of the
cross section curve c(s) of s(s,t). The sweeping
surface generated with c,(s) (and the same frame
as s(s,t)) is an offset surface of s(s,t), if the cross
section curve is a circle centered at the spine curve
or if the function Q(t) satisfies

7(t) o(t) + Q(t) = 0. (31)

Proof.
face s(s, t) can be computed via N(s,t) = s4(s, 1) X

The normal vector of the sweeping sur-

st(s,t). Owing the Frenet formulas and the relation
(21) we may write the normal vector as

N(s,t) = [...]Ja(t) +[...]b(?) _
+(e1(s)é1(s)+ca(s)ca(s)) (T(t)o(t)+2(t)) x(t).

If the coefficient of x(¢) vanishes, then the offset
curves of the cross section curves generate a off-
set surface of the sweeping surface. Clearly, profile
curves with c1(s)é1(s) + c2(s)éz2(s) = 0 describe a

12

circle centered at the spine curve.

]

Equation (31) defines a remarkable class of mov-
ing frames which have been studied in several

8,12,16,18 © From (28) one may con-

publications
clude that the derivative vectors of the frame are
parallel to the tangent vector of the spine curve.
These frames are called rotation minimizing frames
(RMF); they possess many interesting features. The
RMF of a cubic PH spline automatically gener-
ates a G'-sweeping surface, because (27) is ful-
filled. Sweeping surfaces which are generated with
the RMF have curvature line parametrization and
their offset surface can be computed via the planar
offset curves of the cross section curves. If the cross
section curve is a straight line, the corresponding
sweeping surface is a developable. Unfortunately
the RMF of a cubic PH curve is generally not ratio-
nal. A rational approximation scheme for the RMF
of PH cubics and a geometrical discussion of the
corresponding sweeping surfaces, including convex-

ity criteria, will be presented in a separate paper'!.

An example is shown in Figure 8. The left fig-
ure shows a cubic PH spline curve with 4 segments
(black curve). This curve has been obtained by con-
verting the underlying thick grey curve into a cubic
PH spline. In addition to both curves, the boundary
points of the PH cubics and the associated unit tan-
gents (dashed lines) have been drawn. The sweeping
surface in the second picture has been generated by
a rational approximation of the RMF which leads to
rational G spline surfaces.
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