Convex Surface Fitting
with Parametric Bézier Surfaces

Bert Juttler

Abstract. We present a method for approximating scattered data with
a convex parametric Bézier surface patch. In the first step we construct
a reference surface which roughly specifies the expected shape of the ap-
proximating surface. Based on this reference surface we generate linearized
convexity conditions. The approximating surface is then found by solving
a quadratic programming problem.

§1. Introduction

Convexity conditions for bivariate piecewise polynomial functions have been
studied in a number of publications, see the survey articles by Goodman [7]
and Dahmen [2]. In the case of bivariate polynomials in Bernstein-Bézier rep-
resentation with respect to a basis triangle, Chang and Davis [1] observed that
convexity of the control net implies convexity of the polynomial. This result
was later generalized to the multivariate case by Dahmen and Micchelli [3].
For tensor—product spline functions, weak convexity conditions were developed
by Floater [5]. These conditions lead to a system of quadratic inequalities for
the spline coefficients, where each inequality involves only relatively few coef-
ficients.

Willemans and Dierckx [13] developed a method for convex surface fit-
ting with Powell-Sabin spline functions. Based on the quadratic convexity
conditions by Chang and Feng (see [2]) they were able to formulate this task
as a quadratic optimization problem with quadratic inequality constraints.

In the case of parametric surface patches, only a few related results seem
to exist. A very strong sufficient convexity condition for parametric tensor—
product Bézier surfaces has been formulated by Schelske in 1984, see [8]. This
condition is fulfilled only by convex translational surfaces. Zhou [14] derived
convexity conditions for parametric triangular Bézier surfaces. These condi-
tions lead to a system of inequalities whose left—hand sides are polynomials
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of degree 6 in the components of the control points. Recently, similar con-
ditions for parametric tensor—product surfaces were developed by Koras and
Kaklis [12]. An approximate method for removing shape flaws from tensor—
product B-spline surfaces is described in [11]. This method is based on local
modifications of the control net.

We present a new method for convex surface fitting with parametric
tensor—product Bézier surfaces. Based on linearized convexity conditions we
formulate this task as a quadratic optimization problem with linear inequality
constraints. This problem can be solved with the help of standard algorithms
from optimization theory. The method is illustrated by an example.

§2. Outline of the Method

We present a method for solving the following approximation problem. A
cloud of data p; € R3 (i =0,...,P) is given. In addition to the data, we
assume that associated parameter values (u;,v;) € [0,1]? are given. If these
parameters are unknown, then they can be estimated from the data, e.g. by
projecting them into a suitably chosen plane. A more sophisticated scheme
for assigning the parameter values has been developed by Floater [6].

The given data are to be approximated by the parametric tensor—product
Bézier surface patch (see [8])

z(u,v) = ZZ B™(u) B*(v) brs, (u,v) €[0,1]%, (1)

r=0 s=0

with the unknown control points b, s = ( by 51 brs2 brs3 )T e R? and with
the well-known Bernstein polynomials BE(t) = (2) t2(1 — t)P~4. The control
points b, ; are found by the following procedure.

1) Find a reference surface. This surface is used in order to specify the
expected shape of the approximating surface (1). Its construction is de-
scribed in Section 3.

2) Generate linearized convezity conditions. Based on the reference surface
we generate a system of linear inequalities for the components of the
control points b, ; which guarantee the convexity of the surface patch
(1), see Section 4.

3) Compute the control points b, ; € IR3. The control points are found by
solving a quadratic programming problem as outlined in Section 5.

This procedure can be iterated several times; one may use the first result as
a new reference surface. The new reference surface leads to linear convexity
constraints which are better suited for approximating the given data in the
third step.

In addition, one may use the idea of parameter correction in each cycle:
the parameter values (u;,v;) are replaced by new values (u;, 9;) € [0,1]? such
that the new error vectors z(u;,v;) — p, are perpendicular to the surface,
see [8] for details. By using the new parameters we can improve the result of
the approximation procedure.
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§3. The Reference Surface

An approximating parametric Bézier surface for scattered data can be found
by minimizing the least—squares sum

L= llau, v) = il @

The minimum can easily be computed by solving the system of normal equa-
tions, see [8]. In general, however, minimizing the sum (2) leads to a non-
convex surface.

In order to find a suitable convex reference surface, we modify the least
squares sum by adding a tension term, F' = L + w T, with

1 pl
T = / A ||$uuu||2 —+ ||zvvu||2 + ||zuu||2 du dv. (3)
0

The subscripts denote the partial derivatives of the surface z(u,v). The ten-
sion term is introduced in order to increase the “stiffness” of the reference
surface. Its influence is controlled by the weight w. The value of the tension
term is zero if and only if the surface is a biquadratic translational surface,
i.e. the parameter lines of both systems u = constant and v = constant are
translated copies of the curves z(u,0) and z(0,v).

Figure 1 shows a biquadratic translational surface and its Bézier con-
trol net (dashed lines). Three samples of the congruent parameter lines
u = constant have been drawn as solid black curves. All faces of the con-
trol net are parallelograms; this property characterizes translational Bézier
surfaces.
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Fig. 1. A translational surface. Fig. 2. Linearized convexity conditions.

If the weight w is increased, then the surface which minimizes the modified
functional F'+w T converges to a biquadratic translational surface. Note that
this limit translational surface is not guaranteed to be convex. In all practical
examples, however, one can expect that this surface is convex, provided that
the data stem from a roughly convex surface. Otherwise the given scattered
data is unsuitable for a convex approximation, see also the comments at the
end of this section.
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The above tension term (3) is just one possible choice. One may choose
any other functional which increases the stiffness of the resulting surface. The
kernel of the tension term, however, should not only contain the linear or
bilinear Bézier surfaces (this would happen if we choose the tension term as
an integral of squared second derivative vectors), as these surfaces can never
be strongly convex. (A surface is said to be strongly convex if it is convex and
the Gaussian curvature is positive everywhere.) The tension term (3) seems to
be a reasonable choice as its kernel (biquadratic translational surfaces) offers
enough degrees of freedom for providing a reasonable approximation.

The control points of the reference surface are found by solving the system
of normal equations

F
0 =0 (r=0,....,m; s=0,...,n; k=1,2,3). (4)
8br,s,k

They form a system of linear equations for the components of the control
points.

Still, the weight w has to be chosen. On the one hand, the influence of
the tension term should so great that solving (4) leads to a convex reference
surface. On the other hand, the weight w should be as small as possible in
order to get linearized convexity conditions which are well adapted to the
specific data.

We compute an appropriate value for the weight w with the help of simple
binary search. Let w = 1.0 be the initial weight and compute the resulting
reference surface. If this surface is strongly convex but it does not fit very
well to the data, then we decrease the weight, wnew = %wold, until the ap-
proximation gets good enough. If the reference surface becomes non—convex,
however, than we go back to the previously used value of w. It may happen
that the reference surface never gets non—convex. In this case the reference
surface is already the final approximating surface; no convexity constraints
are required.

If the initial reference surface is non—convex, then we increase the weight,
Whew = 2Wo1q, Until a strongly convex surface is obtained. If this procedure
fails (this may happen if the data stem from a non—convex surface), then the
data is probably unsuitable for convex approximation. In this case one may
use the best fitting plane as a convex approximation.

§4. Linearized Convexity Conditions

With the help of the reference surface it is now possible to find linear con-
straints which guarantee the convexity of the surface (1). The situation is
illustrated by the schematic Figure 2. Each surface patch (1) is associated
with the point b € R*™ D™+ with the coordinates

b= (bgo boy bon big --- by ) (5)

The convex surfaces correspond to a certain subset 2 of this space. The
reference surface is associated with an interior point by of this subset. By
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generating linear sufficient convexity conditions we construct a circumscribed
polyhedron Qg C 2 for the point bg.

The linearized convexity conditions are found with the help of the follow-

ing procedure.

1)

2)

3)

Use the reference surface for specifying bounding polyhedral cones for the
first derivative vectors of the approximating surface. Let (7;);=1,.. g and
(8;)j=1,...,s be the spanning vectors of these cones. We generate linear
inequalities for the unknown control points b, s which guarantee that the
first derivative vectors are contained within these cones.

Find a bounding polyhedral cone for the cross product z, x z,. Let
(tk)k=1,... 7 be the spanning vectors of this cone. They are a certain
subset of {¥; x §; |[i=1,...,R; j=1,...,S}. Then,

T
xu(ua U) X xv(u7 U) = Z Tk(ua ’U) i}ﬁ (U, U) € [Oa 1]27 (6)
k=1

holds with some non-—negative functions 7% (u, v).

Generate linear constraints which guarantee that the second fundamental
form of the surface is either non-negative or non—positive definite for all
(u,v) € [0,1]2. As a sufficient condition, we guarantee that the 7' matrices

= z“u'fk zuv'{k _
Hk:_<$uu£k zvvfk) (k—].,’T) (7)

are either all non—negative or non—positive definite. This is sufficient for
(local) convexity as the second fundamental form

1 (:cuu (Ty X Ty)  Tuw - (T X 1:«;)) (8)

||$u X IL'U“ Ty - (xu X zv) Tyy (xu X zv)

is a non—negative linear combination of these matrices, cf. (6). The ma-
trices (7) are non—negative (non—positive) definite if and only if the 2T
quadratic polynomials

(¢ 20-0) 8 (4Cg) G-t O

are non—negative (non—positive) for ¢ € [0,1]. These polynomials are
obtained if we restrict the quadratic form 27 Hyz (z € R?) to the linearly
parameterized edges of the square with the vertices (£1,0) and (0, +1).
Their coefficients depend linearly on the control points b, ;. Based on
this fact we are able to generate linear inequalities for the control points
which imply convexity.

This procedure leads to a system Z of linear inequalities for the components
of the control points b, ;. It may be necessary to subdivide the reference sur-
face in order to find a suitable bounding cone for the cross product z, x z,
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(for instance, if the reference surface cannot be considered as the graph of a
function). Due to space limitations we cannot present any details of the proce-
dure. See [9] for more information. As observed in [9], the linearized convexity
conditions can be adapted to any strongly convex reference surface. This is
also obvious from Figure 2; each inner point of {2 possesses a circumscribed
polyhedron.

§5. Quadratic Programming

The control points b, s of the approximating surface patch (1) are found by
minimizing the least—squares sum (2) subject to the linearized convexity con-
ditions Z. This is a quadratic programming (qp) problem; a quadratic ob-
jective function is to be minimized subject to linear equality and inequality
constraints.

A number of fast and efficient solvers for solving problems of this type
have been developed in optimization theory. For instance, an approximate
solution can be found with the help of the LOQO package by Vanderbei (avail-
able from http://www.princeton.edu/~rvdb/). Alternatively one may use
an active set strategy (which works similarly to the simplex algorithm) as de-
scribed in the textbook by Fletcher [4]. The example in the next section has
been computed by using LOQO.

§6. An Example

We sampled 51 points from an ellipsoid and perturbed them by using ran-
dom numbers. These data are to be approximated by a bicubic Bézier surface
patch (1). Figure 3 compares the unconstrained approximating surface (a)
and the convex approximating surface (b). Whereas the unconstrained sur-
face possesses a huge number of oscillations, the constrained approximation
possesses a convex shape. The least squares sums of both surfaces are equal
to 0.153 and 0.244, respectively (reference surface: 0.422). The convex ap-
proximation has been obtained after 2 iterations (with the use of parameter
correction) of the procedure from Section 2. In the first (second) iteration we
had to solve a qp problem with 1761 (9674) linear inequalities for 48 (48) un-
knowns. In addition to the surfaces, both Figures 3 a,b show the Bézier control
nets and some level curves z3 = constant. The ellipses in Figure 3b visualize
the curvature distribution. Their principal axes are the principal curvature
directions, the diameters are proportional to the principal curvatures.

The two plots in Figure 4 visualize the distribution of the Gaussian cur-
vature K (u,v) for both approximating surfaces. The Gaussian curvature of
the unconstrained approximation indicates huge hyperbolic surface regions,
—63.33 < Kuync(u,v) < 12.44. In contrast to this, the convex surface has
non—negative Gaussian curvature values, 0.01 < K ony(u,v) < 2.32.

§7. Final Remark

In this article we described a method for convexity—preserving surface fitting
with parametric tensor—product Bézier surface patches. An analogous method
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(a)

Fig. 3. The unconstrained approximation (a) and the convex approximation (b).

Fig. 4. The Gaussian curvature plots of the surfaces shown in Fig. 3.

can be formulated for approximating scattered data with a tensor—product
spline function subject to piecewise convexity/concavity constraints, see [10].
Similar to the parametric case, the convexity of the approximating surface can
be guaranteed by linear inequalities for the spline coefficients. In the functional
case, however, the approximation scheme is much simpler as no reference
surface is required. The third step of the algorithm from Section 4 can be
applied directly to the Hessian matrix of the spline surface. Moreover, the
linear inequalities can be shown to be asymptotically necessary: if the number
of inequalities is increased in a suitable manner, the feasible set of spline
functions approximates the set of all convex spline functions as accurately as
desired. This property can be achieved as the convex spline functions form a
convex set.

The set €2 of all convex parametric surface patches, by contrast, is non—
convex, see Section 4. Hence, no asymptotically necessary linearized convexity
conditions for parametric Bézier surfaces can be found. As outlined in Sec-
tion 4, is possible to find linear sufficient convexity conditions for each strongly
convex surface, i.e. for each point from the interior of €2.
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