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Abstract

We present a new method for constructing a low degree C'! implicit spline rep-
resentation of a given parametric planar curve. To ensure the low degree condition,
quadratic B-splines are used to approximate the given curve via orthogonal projec-
tion in Sobolev spaces. Adaptive knot removal, which is based on spline wavelets,
is used to reduce the number of segments. The B-spline segments are implicitized.
After multiplying the implicit B—spline segments by suitable polynomial factors the
resulting bivariate functions are joined along suitable transversal lines. This yields
to a globally C! bivariate function.
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1 Introduction

Planar curves in Computer Aided Geometric Design can be defined in two different ways.
In most applications, they are described by a parametric representation, x = z(t)/w(t) and
y = y(t)/w(t) where z(t),y(t), and w(t) are often polynomials, or piecewise polynomials.
Alternatively, the implicit form f(x,y) = 0 can be used. Both the parametric and im-
plicit representation have its advantages. The availability of both often results in simpler
and more efficient computations. For example, if both representations are available, the
intersection of two curves can be found by solving a one-dimensional root finding problem.

Any rational parametric curve has an implicit representation, while the converse is
not true. The process of converting the parametric equation into implicit form is called
implicitization. A number of established methods for ezact implicitization exists: resultants
[3], Grobner bases [1], and moving curves and surfaces [12]. However, ezact implicitization
has not found widespread use in CAGD. This is — among other reasons — due to the
following facts:



e Exact implicitization often produces large data volumes, as the resulting implicit
polynomials may have a huge number of coefficients.

e The exact implicitization process is relatively complicated, especially, in the case
of high polynomial degrees. For instance, most resultant—based methods need the
symbolic evaluation of large determinants.

e Even for regular parametric curves, the exact implicitization may have unwanted
branches or self-intersections in the region of interest.

For these reasons, approrimate implicitization has been proposed. Several methods are
available: Montaudouin and Tiller [10] use power series to obtain local explicit approx-
imation (about a regular point) to polynomial parametric curves and surfaces. Chuang
and Hoffmann [2] extend this method using what they called “implicit approximation”.
Dokken [5] proposes a new way to approximate the parametric curve or surface globally;
the approximation is valid within the whole domain of the curve segment or surface patch.
Sederberg et al. [13] use monoid curves and surfaces to find an approximate implicit equa-
tion and approximate inversion map of a planar rational parametric curve or a rational
parametric surface.

As a well-known fact, the parametric and implicit representations of a planar curve have
the same polynomial degree. However, the number of the coefficients in the parametric
case is 2(n + 1) while it is (n + 1)(n + 2)/2 in the implicit case. In the implicit case, high
polynomial degree will lead to expensive computations. This is even more dramatic for
surfaces. We restrict ourselves to low degree implicitization.

In [7], we used quadratic B—splines for constructing a low degree spline implicit rep-
resentation of a given parametric planar curve of degree n. A spline implicitization is a
partition of the plane into polygonal segments, and a bivariate polynomial for each seg-
ment, such that the collection of the zero contours approximately describes the given curve.
On the boundaries, these polynomial pieces are joined to form a globally C™ spline func-
tion, for a suitable choice of m. In [7], we restricted ourselves to continuous functions, i.e.
m = 0.

Clearly, differentiability (C') is needed for many applications. For example, in foot
point generation, one has to compute a point such that [(p — X), Vf(X)] = 0. As the
computation of the gradient is needed, the curve should be C'. Another example is the
computation of distance bounds between two planar curves [8].

The main goal of this paper is to find a low degree C* spline implicit representation of
a given parametric planar curve of degree n. To ensure the low degree condition, quadratic
B-splines are used to approximate the given parametric curve (section 2). Adaptive knot
removal, which is based on spline wavelets, is used to reduce the number of segments
(section 3). The resulting quadratic B-spline segments are implicitized (section 4). Finally,
by multiplying with suitable polynomial factors, these implicitized segments are joined
together with C'! continuity (sections 5, 6).



2 Quadratic B—spline Approximation

Following the idea proposed in [11], we generate a quadratic B-spline approximation via
orthogonal projection in Sobolev spaces. The quadratic B-splines B; on [0, 1] with uniform
knots (stepsize h = 27%) and 3-fold boundary knots form an orthonormal sequence in a
suitably weighted Sobolev space. In the interior of the segment, the inner product is defined
by

(f.9) = 7 (F.9) + 3h (1 9) + 5h° (1", 9") ()

where (., .) is the usual L? inner product. In order to achieve orthogonality at the boundary,
additional terms have to be used. These weights and weight matrices (which are used near
the boundary), have been specified in [11].

The B-spline approximation g* of a given curve g = (g1(t), g2(t)), with respect to the
norm which is induced by the inner product (1), can then be written as:

g = Zd,- Bj(t)  with  d;= ( gg;gjg )

The control points d; of the approximating B-spline curve can be generated by simple
and efficient computations, as only (possibly numerical) integrations are needed. Also,
no assumption about the given parametric representation have to be made, except that
it should be at least in the underlying Sobolev space H*?. By using sufficiently many
segments, an arbitrarily accurate approximation can be generated; the approximation order
is 3.

Example

Consider a polynomial parametric curve g of degree 15 which is shown in Fig. 1. First, we
approximate g using quadratic B-splines. Fig. 1 shows the error between g (black) and the
quadratic B-spline approximation g* (gray) for stepsize h = 1/128. Note that the error
had to be exaggerated by a factor 6 = 50000 to make it visible.
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Figure 1 The original curve (black) and the error introduced by approximating it
with a quadratic B-spline curve (gray). The error has been exaggerated.



3 Data Reduction via Spline Wavelets

After computing the initial B-spline approximation, we apply a knot removal (or data
reduction) procedure, in order to reduce the number of segments. Such a reduction means
that we approximate the given B-spline in a space S by a B-spline in linear subspace of S.

Methods for knot removal have been discussed by several authors, see e.g. [6, 9] and
the references cited therein. In [6], the authors propose an optimal technique, by treating
the knot removal procedure as a reverse approximative knot insertion process. It is based
on a so—called “ranking list”, which is used to compare the evaluate the error introduced
by removing a specific knot.

In [7], a special method for our special situation has been proposed, which is based on
the use of spline wavelets [4]. The method is not optimal, but it is cheaper than all other
methods since no sorting or ranking lists are required. For the convenience of the reader,
we give an outline of the method.

1. First, the wavelet transform of the given B-spline curve is computed.

2. Then, by setting all wavelets coefficients vectors with norm less than the threshold
to be zero, we can remove blocks of wavelets with zero coefficients vector. For each
block, one of the two common knots can be removed from the knot sequence. The
length of these blocks varies between 2 and 5 wavelets, depending on the location of
the removed knot in the knot sequence (that is, if the knot is an inner knot or close
to the boundary).

3. Finally, the B-spline final representation g** of the given B-spline curve g* is com-
puted over the reduced knot sequence K¢ .-

The error can be bounded simply by applying the wavelet synthesis to the set of removed
wavelets. Due to the convex hull property of the B—splines, the error is bounded by the
maximum absolute value of the resulting Bézier control points.

Example Continued

We apply the procedure to the quadratic B-spline curve g*. The number of knots is reduced
from 133 to 13, where the threshold is equal to 1073. Fig. 2 shows the error between the
original curve g (black) and the final B-spline representation curve g** (gray) over Kg 1.
The knots are plotted as circles. The knots at the boundary have multiplicity 3. The error
is exaggerated by a factor 6 = 5 to make it visible.

4 Segment-wise Implicitization

After the data reduction process, we have a quadratic B-spline approximation g** defined
over the reduced non—uniform knot sequence Kg,,,1- In order to implicitize this curve,
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Figure 2 The original curve (black) and the B—spline approximation curve after
the data reduction (gray). The error is exaggerated (amplified) by a
factor 6 = 5.

we split the B-spline representation of this curve into the Bézier segments. Then, each
quadratic Bézier segment is implicitized.

The conversion from B—spline representation of the curve to Bézier representation can
easily be achieved via knot insertion. By increasing the knot multiplicity at each knot to
be equal to the degree of the curve (in our case to be 2), the B—spline representation is
converted to Bézier representation.

Each quadratic parametric Bézier segment has three control points. Let (po, go), (p1, 1)
and (po, g2) be the control points of one of these segments. Then the implicit form of this
segment can be shown to be equal to

dot ( Qo(y) P2(7) — Po(7)Qa2(y)  Qoly)Pr(w) — Po(z)Q1(y) )

Gla.y) Q1 (W)Po(z) — P(0)Qa(y)  Qu(y)Pa(x) — Po(2)Qa(y)

where

r@ = (o-0 aw=()a-» o i-o12
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5 Joining two segments

In order to generate a C' continuous function, we modify the bivariate polynomials, which
have been produced by the implicitization process, by multiplying them with suitable
quadratic polynomial factors.

We shall use the following abbreviation:

Definition 1. For a given polynomial f(x,y), let Z(f) be the zero set {(z,y) | f(z,y) = 0}.

In this section, we consider two neighboring Bézier segments of g**, with implicit repre-
sentations G;(x,y), i = 1,2. These segments are parabolas which have a common tangent
T, at their common point p (see Fig. 3). Clearly, this point is non-singular. We choose
the transversal line L as an arbitrary line passing through p, which is different from 7.
Let q and r be the second points of intersection of Z(G;) and Z(G5), respectively, with
the chosen transversal line L. Let s be a point on L, distinct from p, q and r. We multiply
G1(z,y) and Go(z,y) by quadratic polynomial factors fo1(z,y) and fi2(z,y) respectively
such that:



(1) Neither fo;(z,y) nor fi4(z,y)) contains the factor L = L(z,y), where L is the linear
polynomial that vanishes on the line L.

(i1) Z(f2,1) and Z(G2) have a common tangent at r.
(¢13) Z(f12) and Z(G;) have a common tangent at q.
(v) Z(f12) and Z(fs,) have a common tangent at s.

We consider the bivariate polynomials

Fl(way):Gl(xay)fZ,l(xay) and FZ(‘T’y) =G2($,y)f1,2(fc,y).

Figure 3 Multiplying by quadratic polynomial factors.

Theorem 1. If the conditions (i)—(iv) are satisfied, then, after multiplying I, by a suitable

constant, the two bivariate polynomials Fy(z,y) and Fy(x,y) are C* along the transversal
line L.

Proof. Let

_ i, _ i g
= E i j T Y, Gy(z,y) = E , bij 'y,

i+j<2 i+5<2

3,7>0 3,j>0
f21$y E Cz,gl'ya f12~’13y E d,ny

1+5<2 i+5<2

1,720 1,720



By normalization and simple change of coordinates, we may achieve that p = (0,0),
VG1(0,0) = VG5(0,0), and L is the y—axis. Let the coordinates of the points q, r, s
be (0, k1), (0,k9) and (0, k3), respectively, with certain constants ki, ko and kj.

The zero contours of G; and G pass through p and they have the same tangent at this
pOiIlt. Th'llS, Qg0 = b(),() = 0, a0 = b170 and ap,1 = b(),l.

The conditions (77) — (iv) give 9 linear equations. By solving this system of equation,
it is easy to show that after multiplying F> by (koco2)/(k1do,2), the coefficients A; ;, B; j of
Fi(z,y) and Fy(x,y) respectively are equal whenever ¢ < 1. Hence, Fi(z,y) and Fy(z,y)
meet with C' along L.

The cases k; = 0 and by = 0 are excluded since p is nonsingular. The case cpo = 0
(do = 0) is the case where f5; (resp. fi2) contains L; and this is also excluded from the
assumption (condition (7)). ]

Remark 1. 1. A similar analysis shows that the theorem is also valid if s = q, s =r,
ors=q=r.

2. In practice we choose s far away from p, in order to avoid singular points in the area
of interest. Note that the above construction has one degree of freedom.

3. It should be noted that a C' joint along L can be achieved also (see Fig. 4) if:

(a) f2,1 = f1,2 =% or
(b) for = L, fiz = L f» and fi G4, f» G are joined with continuously along L,
where f1, fy are two linear factors.

These two cases are not interesting for applications, due to the presence of singular-
ities.

4. It is clear that the transversal line passing through p should be chosen differently
from the tangent to the curve at p. In the sequel of this paper, we assume that this
assumption is always satisfied.

6 Joining several segments

Now we use the technique from the previous section in order to join more than two seg-
ments. As an example, Figure 5 shows three neighboring segments which are described
by bivariate polynomials G; 1, G; and G;;1. In order to join G;_; and G; along L; 1, we
multiply G; 1 by fo,—1 and G; by fi; where fo;_1, fi,; are quadratic polynomial factors
satisfying the conditions (i) — (iv). Similarly, by multiplying G;, Git1 with fo;, fiit1,
respectively, we join these segments along L;. In general, the polynomials fi; and f,; are
different. Thus, we split the -th patch again into two sub-patches by a line /; and join the
two different factors with C' continuity along it.
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Figure 4 Multiplying by quadratic polynomial factors contain L.

Figure 5 The original curve (black) and the quadratic polynomial factors (gray).

6.1 The algorithm

According to Theorem 1, we may achieve a C'—joint along the transversal lines passing
through the junction points p;, after multiplying with suitable quadratic polynomial fac-
tors. In order to obtain a globally C* spline function, we propose the following algorithm

(see Fig. 5):

1. Divide the plane into patches by arbitrary lines L; passing through the junction

points p;. For instance, one may choose the normals to the curve.

2. Each internal patch (from the second to the m — 1th patch, where m is the number
of patches) is subdivided into two sub—patches by an arbitrary line /;. For instance,

one may choose the normal through the midpoint.




3. On the first boundary patch, we multiply by a quadratic polynomial factor fs; such
that Z(fs,1) is tangent continuous with the next parabola Z(G2) at ry.

4. The next patch is modified by applying a piecewise quadratic multiplier, defined as
a quadratic polynomials fi; and f5; on each of the two sub-patches. The multiplier
has to satisfy the following conditions:

— It must be C' on the whole patch.
— 2Z(f1,;) is tangent continuous with the previous parabola Z(G;_1) at q;_;.
— 2Z(f1,) is tangent continuous with Z(fs,_1) at s;_i.
— 2(fs;) is tangent continuous with the next parabola Z(G;;1) at r;.
The first condition is fulfilled by a 7-dimensional linear space of spline functions. The

other three conditions give two homogeneous linear conditions each®. This results in
a homogeneous system of equations, which provides at least one nontrivial solution.

5. The previous step is repeated until one arrives at the last segment.

6. Finally, a similar construction as in Step 3 is used for the last segment.

Remark 2. 1. Theoretically, it could happen that the nontrivial solution computed in
step 4 vanishes with multiplicity two along the transversal line. In this case, we
cannot form a global C! function, because the multiplying constant would be zero.
The next Lemma analyzes this degenerate case in more detail, showing that it can
be excluded in practice.

2. The above construction provides two degrees of freedom. When joining the first two
patches, one may choose the location of the point s; and the slope of tangent 7
(the tangent of fo at s;). In general, the multipliers which are applied to the other
patches are then determined up to scalar constants.

Now we analyze the construction which is used in Step 4.

Lemma 1. Consider the situation of step 4, see figure 6. In addition, we assume that the
following assumptions are satisfied.

e The three points p;_1, qi_1 and s;_1 are distinct.
e The three points p;, r; and s; are distinct.
e L, 1 does not pass through r;.

e L; does not pass through q;_1 or sj_1 .

!The zero contours of two bivariate functions h; and hs are tangent continuous at a point p € R?, if
h1(p) = ha(p) and det(Vh (p), Vha(p)) = 0. This leads to two homogeneous linear equations.



Figure 6 Step 4 of the construction.

e [; does not pass through r;, q;_1 or Sij_1.

e [; does not pass through the intersection points of L;_1 and T3, L; and Ty, or L; and
Ty, where Ty is the tangent of f1; at si—1, Ts is the tangent of fi,; at qi_1, and T3 s
the tangent of fo; at rj.

Then the nontrivial solution obtained in Step 4 does not vanish along the transversal lines
Li—l or Lz

Proof. Let

fii = cop+ciox+cap %+ C1,1 TY + Co,1 Y + Co2 y* and
foi = dopg+dipgz+dayp 7% + digry +do1y +doo Y2

By normalization and suitable choice of coordinates, we may achieve that p; 1 = (0,0)
and L;_; is the y—axis. Let [; be defined by
Y — Yo — mo(z — x) =0
If f1; and fo,; are C' along l;, then
fii = cop+cior+cap z? + C1,1TY + Co1 Y + Cop2 y* and
foi = fio+ (dog — co2)(y — yo — mo(x — xo)).

Let mq, my and mg be the slopes of T7, T» and T3 respectively. Moreover let (0,y1), (0, y2)
and (x3,ys) be the coordinates of q;_1, si—1 and r;, respectively. Z(fi;) passes through
Qi-1, Si—1 and has tangents Ty, T at these points. Also, Z(f,;) passes through r; and
tangent T3 there. This gives 6 homogeneous linear conditions for 7 unknowns (dy, and
Ck,j> k,] = 02,]{5 -|-_] < 2)

10



Assume that ¢ =1, i.e., f1; does not vanish at L;_;. Then we get a system of 6 linear
equations for 6 unknowns. By factoring the determinant of the coefficient matrix we get

- v

29190 (yl - ?J2) T3 (y3 — Y — m0(333 - ~T0)) (y3 — m3x3 — Yo + moxo)
M—/ N~ AN

1,2,3 4 5 6
Clearly, there exist two quadratic factors f;; and f;; satisfying the above conditions if the
determinant is not equal to zero.

The first three factors vanish if the three points p;_1, qi—1 and s;_; are not identical.
The fourth factor vanishes if L;_; passes through r;, and the fifth factor vanishes if /; passes
through r;.

The lines L; and Ty intersect at (0, y3 — mgzs). Consequently, the sixth factor vanishes
if I; passes through the intersection point of L; ; and T5.

Analogously, by applying the same technique to fy; and L;, it can be shown that the
three points p;, r; and s; should be distinct, L;_; should not pass through q;_; or s;_1, /;
should not pass through q;_1 or s;_1, and /; should not pass through intersection points of
Li and Tl, or L2 and TQ. l:‘

As the main problem of this construction, the coordinates of the point s; depend on the
coordinates of the previously generated point s; ;. After the first patch, we do not have
any control on the coordinates of the points s;, [ = 2,...,m — 1 where m is the number
of the patches?. Hence, s; may coincide with p;, q; or r;, i.e the polynomial factors vanish
on the transversal line. Moreover, the polynomial factors may intersect the original curve
at the area of interest.

As an example, Fig. 7 shows the original curve segments (black) and the quadratic
polynomial factors (gray), these factors intersecting the original curve at points A* and
B*. Here, The intersection at the point A* is not so important because this happened far
away from our area of interest. The main problem is at the point B*. In order to avoid
this problem, we will localize our approach.

6.2 The modified algorithm

If there is an intersection of the quadratic polynomial factors and the original curve, or
s; coincides with p;, q; or r;, then we introduce an unwanted singularity in the region of
interest. There is degree of freedom to choose the point s; and the tangent 7%, but it may
not be sufficient to guarantee that there is a choice avoiding singularities. This problem
can be avoided by dividing each patch to 4 sub-patches instead of 2 sub-patches. Below,
we give the sketch of the modified algorithm (see Fig. 8).

1. Divide the plane into patches by arbitrary lines L; passing through the junction
points p;. For instance, one may choose the normals to the curve.

2Tt is the same problem as for C'! interpolation with quadratic splines. Once we fix the tangent direction
for the first quadratic function we do not have freedom to choose any of the tangent directions afterwards

11



Figure 7 The quadratic factors intersect the original curve at A*, B*
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Figure 8 The original curve (black) and the modified quadratic factors (gray)

. Each internal patch (from patch 2 to patch m — 1, where m is the number of patches)
is subdivided into 4 sub-patches by arbitrary lines [;, n;, m;. For instance, one may
choose the normal to the curve through three equally spaced points.

. On the first boundary patch, we multiply by a factor fy; of degree 2 such that Z(fs)
is tangent continuous with the next parabola Z(G5) at ry.

. On the next patch, we multiply by a piecewise multiplier, defined as a quadratic
polynomials fi1;, foi, f34, and fs; on each of the four sub-patches. It has to satisfy
the following conditions:

— It must be C* within the whole patch.
— Z(f1,) is tangent continuous with the previous parabola Z(G;_1) on q;_1.

— Z(f1,) is tangent continuous with Z(fs,;—1) at s,_;.

12



— 2Z(fa;) is tangent continuous with the next parabola Z(G;;1) at r;.

The first condition is fulfilled by a 9-dimensional vector-space of splines. The other
three conditions give two linear conditions each, so we gain two additional degree of
freedom. After choosing these two degree of freedom (see below) there is a nontrivial
solution.

5. The previous step is repeated until one arrives at the last segment.

6. Finally, a similar construction as in Step 3 is used for the last segment.

6.3 Using the additional degree of freedom

Using the above algorithm, for each internal patch, we gain two additional degrees of
freedom. They can be used to control the curve locally. This can be done by choosing the
intersection point s; and the slope of tangent 7; at this point.

8 8

Ya4q

Y44

Figure 9 Using the slope of the tangent 7; to control the curve locally
Fig. 9 shows the original curve (black) and the polynomial factors (gray) for different

choice of the tangent T; at s;. If it here is an intersection between the polynomial factors
and the original curve at any patch (for instance patch 7) or s; coincide with p;, q; or r;, we

13



modify the coordinate of s; or the slope of T; at this patch to avoid the intersection. Any
such modification will act locally and affect only two patches (patch i and patch i + 1).

Clearly, subdividing into four sub—patches is more expensive than subdividing into two
sub—patches, and it leads to a higher data volume. In practice, one may use the following
method. First, divide each patch into two sub—patches. Only if a singularity is introduced
at patch 7, then we discard the two sub-patches and subdivide into four sub—patches.

Fig. 10 shows the same example of Fig. 7. In the left figure, the polynomial factors
intersect the original curve at points A*, B*. After using the localized method, we avoid
the intersection between the quadratic polynomials factors and the original curve at the
area of interest (right figure). We kept the intersection at points A* because it is far away
from the area of interest.

Figure 10 Using the two additional degree of freedom to avoid the intersection
between the quadratic factors and the original curve.

Example (finished)

We start with the piecewise quadratic function whose zero contour G(z,y) = 0 is the
quadratic B-spline curve in Fig. 2. We multiply by suitable quadratic polynomial factors.
Fig. 11 shows the algebraic offsets® (thin lines) of Z(G) (thick line) and the transversal
lines through the junction points. To make the picture clearer, we enlarge a part of the
curve and draw some additional algebraic offsets, see Fig. 12. It can clearly be seen that
the algebraic offsets are tangent continuous.

7 Conclusion
We have derived a method for constructing a low degree C'! implicit spline representation

of a given parametric planar curve. The construction consists of four steps: B-spline curve
approximation, knot removal, segment implicitization and segment joining.

3The algebraic offsets are the curves Z(G — c), where ¢ # 0 is a certain constant.

14



Figure 11 C! implicitized curve and its algebraic offsets.
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Figure 12 C! Implicitized curve and its algebraic offsets(enlarged)

Compared to the existing methods for implicitization, our method has the following
advantages.

e The method is computationally simple. In particular, no evaluations (symbolic or
numerical) of large determinants are needed.

e It produces a low degree implicit representation. For instance, the intersection of a
line with the implicitized curve can be found by computing the roots of a quartic
polynomial.

e The methods avoids unwanted branches or singularities, which otherwise could be
present in the neighborhood of the given curve.

e The implicit function is globally C! continuous.

15



e The method can be applied to any parametric curve with coordinate functions in the
Sobolev space H??, not just to polynomial or piecewise polynomial representations.

As a matter of future research, we plan to find out an automatic method for adjust the
tangents slope (for the modified algorithm 6.2) and generalize this method to surfaces.
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