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We describe an algorithm for interpolation of posi-
tions by a rational spline motion. A reparameteri-
zation of the resulting motion is applied in order to
achieve the desired distribution of the velocity. For
the ease of presentation we discuss trapezoidal veloc-
ity profiles, i.e., piecewise constant and linear velocity
distribution. The method can be generalized to more
general velocity profiles too. The whole spline scheme
possesses some special features which make it a suit-

able tool for the control of industrial robots.
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Introduction

By using spatial rational spline motions it is possible
to apply many of the powerful methods of Computer
Aided Geometric Design (as Bézier or B-spline tech-
niques) in order to solve problems out of the field of

Kinematics and Robotics. Rational spline motions

are characterized by the property that the trajecto-
ries of the points of the moving object are rational
spline curves, i.e., the trajectories are NURBS (Non-
Uniform Rational B—Spline) curves (see the textbook
by Hoschek and Lasser!). Due to their geometric flex-
ibility and computational efficiency, NURBS curves
and surfaces became an industrial standard (STEP)
for the data exchange between CAD systems. There-
fore rational spline motions seem to be the appropri-
ate tool for the mathematical description of motions
regarding industrial applications.

In the near future, the programming and control
of robots will increasingly make use of CAD data. In
general, this data will specify the desired trajectory
of the Tool-Center point (TCP) only, but not the ori-
entation of the end—effector. Great attention should
be paid to the direct integration of CAD data into the
robot control (as far as possible). Rational spline mo-
tions seem to be well suited for dealing with this task.
On the other hand, we are able to develop methods
for simplified programming of complex robot motions

based on rational spline motions using the traditional
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“teach—in programming.”

Most commercial robot controllers use either
piecewise linear or circular interpolation schemes, see
References 2 or 3. As a major advantage of those
schemes, the exact arc-length of the trajectory of the
TCP is known and it can be used for achieving the
desired velocity distribution. In order to overcome
the limitations of linear and circular interpolation,
Wang and Yang* developed a scheme for nearly arc—
length parameterized quintic spline curves. Farouki
and Shah® suggested another approach which is based
on so—called Pythagorean-hodograph curves. Such
curves possess a polynomial arc-length function. For
both schemes, however, the interpolant has to be
computed off-line as the required CPU times are too
large.

In contrast, our spline scheme should be used as
a real-time interpreter of the robot program. In ad-
dition, our spline scheme deals simultaneously with
the translational and the rotational part of the given
positions. The methods described below have been
developed as a part of a new controller for industrial
robots of various geometries.

At first, we present an algorithm which generates
a rational spline motion from a sequence of given posi-
tions, e.g. of teach points. Corner smoothing (which
is necessary for certain applications) can be handled
by introducing artificial teach points. Circular arcs
can also be represented. This ensures the downward—
compatibility of the new controller. By using spline
motions we get a unified data structure for the linear,
circular and spline interpolation schemes. The spline
algorithm works completely local, i.e., the construc-
tion of each segment is only based on a small number
of neighboured positions.

In the second part we discuss the discretization

of the spline motion in order to perform the desired
motion of the robot manipulator. By applying a repa-
rameterization we construct motions with a piecewise
constant or linear velocity distribution. For instance,
such motions are required for welding applications.
The scheme can be generalized to more general ve-
locity profiles (e.g. 7-segment C! profiles). For the
ease of presentation we discuss only trapezoidal pro-
files.

It is shown that the arc length of spline curves can
be approximated with sufficient accuracy in real time.
This enables us to benefit from the increased flexibil-
ity and continuity of spline motions. The paper con-
cludes with some forthcoming questions concerning
(amongst others) the direct integration of CAD data.

In this paper we are not considering robot dynam-
ics. For most CP (Cartesian path) applications (such
as arc welding, deburring, clueing) robot dynamics
is of minor importance, since the robot velocity is
limited by the process. Taking into account robot
dynamics would not affect our approach very much:
One simply would need to substitute the trapezoidal
velocity profiles (which we use) by the profiles which

have been calculated including the dynamics.

Rational motions

In addition to the underlying world zyz-coordinates
(with respect to a fized frame), the moving end-
effector of the robot is equipped with another Carte-
sian Zyz-coordinate frame (called the moving frame).
The origin of the moving frame is chosen at the
Tool Center Point (TCP). The motion of the end
effector is represented by the trajectory m(t) =
(m1(t) ma(t) m3(t))" of the TCP and by the proper
orthogonal 3 x 3 matrix R(¢) which describes the ori-

entation of the moving frame. The parameter ¢ can
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be considered as the time. During the motion, any
point p on the end-effector (which is represented by
its coordinates (%, 9, Zp ) ' with respect to the mov-

ing frame) runs along the trajectory

p(t) = m(t) + R(?) - p- (1)

This equation describes the coordinate transforma-
tion p — p(t) from the moving coordinate system of
the end-effector into world coordinates. If the trajec-
tories of all points p are (piecewise) rational curves,
then the Euclidean motion of the end-effector is said
to be a (piecewise) rational motion. Piecewise ratio-
nal (i.e., NURBS) curves are of fundamental impor-
tance in Computer Aided Geometric Design. They
are usually described in Bézier- or B-spline form, see
Hoschek and Lasser!. We present a simple construc-

tion of spatial rational motions. Let

U
1
t)=— 2
m(t) = — | uw 2
u3
and
dg+d?  —2dyds  2dyds
—d3—d? +2didy +2did;
R(t)_l 2dods  di—d?  —2dyd; (3)
D +2d;dy —|—d22—d§ +2dads
~2dody  2dody  d3—d}
+2dids  +2dads —d22+d32

with D = d +d? +d3 +d32, where the eight functions
wo=ug(t),...,us=us(t) and do=dy(t),...,ds=ds(t)
are polynomials in t. Then, the transformation (1)
between moving and world coordinates describes a
rational motion. It can be shown that all rational
motions result from this construction. For more in-
formation on rational motions we refer to the survey
by Réschel®.

The denominator ug(t) of the TCP trajectory has

been introduced only in order to be compatible with

NURBS curves. Throughout the construction of the
interpolating spline motion we will choose ug(t) = 1.
By using a non-constant denominator function u(t),
it is possible to construct exact representations of cir-
cular arcs and other conic sections, see Reference 1,
Chapter 4.1.4.

The velocity of the TCP with respect to ¢ results
out of

i+ —i’ (4)

in which @(t) = (u1(t) ua(t) uz(t))". The prime
" denotes the derivative with respect to the (time)
parameter ¢.

Note that Eq. (3) is the classical representation of
a rotation matrix R(t) with the help of Fuler param-
eters, see e. g. Bottema and Roth”. As an abbrevia-
tion, the four Euler parameters of the rotation matrix
R(t) are collected in the four-dimensional “Euler vec-

tor”

d(t) = (do(t) du(t) da(t) ds(t)) " - (5)

The first derivative
d'(t) = (do'(t) di'(t) do'(t) d5'(2) )7

of this vector with respect to ¢ will be called the “Fu-
ler velocity”. The corresponding angular velocity of
the end-effector is equal to

2 . o - -
3 (1) = == (d xd' — do'd + dod") ,
dd

(6)

with d(t) = (d1(t) da(t) ds(t)) "

We do not assume that the Euler vectors d(¢) have
always been normalized. (The Euler parameters d
are said to be normalized if c~1T .d= dg +d? +d2 +
d? = 1. Normalized Euler parameters are identical
with the components of the unit quaternion which
describes the rotation R(t), see References 6 and 7.)

Using normalized Euler parameters as proposed by
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Johnstone and Williams®

would cause a doubling of
the polynomial degrees which are required to solve
the interpolation problem.

Later on we will apply a reparameterization ¢ =
t(7) of the motion in order to realize the desired dis-
tribution of velocity. After that, the original param-

eter ¢ of the motion will not be the time in general.

The interpolation problem

A sequence of N + 1 positions Posg, ..., Posy of the
robot end-effector is assumed to be given. This se-
quence is normally generated by “teach—in” program-
ming. Each position Pos; is described by the coordi-
nates r; = (; y; z; )| of TCP and the rotation ma-
trix S;. At the i-th position Pos; the mapping p — p
with

(7)

transforms the ZyZz-coordinates of the end-effector

P=ri+5-D

into world coordinates, cf. (1). The rotation matrix
S; is described by its normalized Euler parameters
q; = (g0 %1 g2 q,-,3)T Note that the two nor-
malized Euler vectors q; and —q; correspond to the
same rotation S; ! We adjust the signs of the Euler

parameters in such a way, that the inequalities

3
azTai—H = Z%‘,j ¢i+1;, >0 (i=0,...,N-1) (8)
j=0
are fulfilled. Then the angles between adjacent Fuler
vectors q; in IR* become as small as possible. Tak-
ing the first Euler parameters q, and using condition
(8), the signs of the remaining vectors q,...,Qqy are
uniquely determined, provided that QZT Qi1 70, ie.
that the angle of the rotation Sfl-SiH from Pos; to
Pos;;1 is always less than 7. (The angle of this ro-
tation is equal to 2 - arccos (q, q; +1), see Reference

7)

In addition to the positions Pos;, a strictly mono-
tonic sequence of real parameter values to < t; <
... <ty is assumed to be given. For the value t = t;
of the motion parameter, the interpolating motion
will interpolate the given position Pos;. If the pa-
rameters t; are yet unknown, then they have to be
estimated out of the given data. In our implementa-

tion we chose ;5 = 0 and

tiv1 = t; + max { Amin, 7 [|Tit1—1i]],

26 - arccos(fiiTaHl) }

for i = 0,...,N—1. (The symbol ||X| denotes the
norm ()'('T)‘c')% of the (Euler) vector X.) By using this
formula the difference of adjacent parameter values
is related to the distance between neighboured posi-
tions. Note that also the difference of the orientations
is taken into account. The constants v, § and A,
have to be specified by the user. The positive real
numbers vy and ¢ control the influence of the rota-
tional and the translational part to the choice of the
parameter values t;, whereas Apn > 0 is the minimal
allowed difference of the adjacent parameter values.
The ratio F should correspond to the maximal accel-
eration of the TCP to the maximal angular accelera-
tion of the robot.

We will construct an interpolating rational spline
motion. The construction will use the sufficient in-

terpolation conditions

(5] (tz)

u3(t;)

for the translational part and

d(t:) = q; (10)

for the rotational part, ¢ = 0,..., N. These condi-

tions are not necessary, as they introduce some nor-
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malizations (for ug(t) and for the norm of the Eu-

ler vectors d(t;)). The general motion interpolation
problem and the use of the resulting additional de-
grees of freedom is discussed in Reference 9.

Based on cubic spline functions we will derive an
interpolation scheme which possesses the following

important features:

o Each segment of the spline motion is obtained by a
local construction which is based on a finite num-
ber of neighboured positions. All computations can
be done in real time, i.e. during the movement of
the robot manipulator. Therefore, the construction
can be used as an interpreter scheme of the given

positions.

o The construction yields a rational C'-spline mo-
tion. Hence, the velocity of the TCP and the an-
gular velocity of the end-effector are always contin-

uous.

o Circular arcs and line segments are available as seg-
ments of the trajectory of the TCP. This ensures

compatibility with recently used algorithms.

These features will make the interpolation scheme a

suitable tool for the control of robots.

Construction of the spline motion

From the given N + 1 positions Posy,...,Posy of
the end-effector we construct an interpolating ratio-
nal spline motion. The construction of the spline mo-

tion consists of three steps:

1. Estimating the velocities. At each given posi-
tion Pos; we estimate the velocity V; = v(¢;) of the
TCP and the Euler velocity &; = d’(¢;) of the moving
end-effector with respect to the parameter t. At first,

we consider the two neighbouring positions Pos; and

Pos; 1 with the parameters ¢ = ¢; and ¢t = ¢;11. The
velocity of the uniform translation of the TCP from
r; to r;;1 is equal to

1

‘7§+) 45_ A—tz (riy1 —1;)

G I
_v.+1_

(11)

(’i =0,...,N — 1) with At; = t;41—t;. Similarly, the
Euler velocities at t = t; and ¢ = t;41 of the uniform

rotation S;~! - S;;1 from Pos; to Pos; 1 are

s Pt (& eTa g

© At -singg i (q“’l (G G qz)

and (12)
(=) Piit1

~T~ ~ o~
ei+1—m ((qi Qit1) Qi1 qz) )

G = 0,...

arccos 4, Q; 11-

,N—1) respectively, where ¢;;11 =

A couple of different methods is available for esti-
mating the velocities at the given positions, e.g. the
Bessel or the Akima scheme, see Reference 1. But
none of them possesses the following additional fea-
ture which arises from the interpolation of positions

generated by the “teach—in” programming;:

o Ifthe TCPs r; and r; 1 of the adjacent positions are
identical but different from r;_;, then the estimate
for v; is expected to be the null vector and the
trajectory of the TCP has to have a sharp corner
at that point. A similar feature is required for the

estimate of the angular velocity.

With the help of these features the user can achieve
simple geometric forms like polygonal lines by teach-
ing double positions.

It is obvious to use the averages

1

) and J(e) +&")

1 _
SV 49

(cf. Figure 1) as estimates of the velocity v; and of

the Euler velocity €;. But this choice is not going to
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ri 1o
Figure 1: Estimating the velocities

meet the above-mentioned requirement. So we use

scaled averages:

& =}oi(e ) +&")

with

pi = min {1,
0; = min {1,

(i=1,...,N—1).

a-min (V) 90|
1537+ 9]

%

. ~(— ~(+

o - min {[[&7]], |8 >||}}
BCRE-

The velocities in the first and last

position are set to zero:

Vo=vy =0 and & =&y = 0. (14)

The positive real parameter o € IR acts as a ten-
sion parameter of the spline motion. For small val-
ues of « the TCP trajectory is pulled to the polygon
ro,rq,...,ry (cf. Figure 2). The Euler vectors pos-
sess a similar property. A reasonable value of this

parameter is a = 1.2.

The 4-

th spline segment describes the motion of the end-

2. Constructing the spline segments.

effector from i-th position Pos; to i+1-st position
Pos;11 (i = 0,...,N—1). At all parameter values
t satisfying t; < t < t;41 the trajectory of the TCP
results out of (2) with up(¢) =1 and

ul(t)
up(t) | =3 Bj (tA_tfi) b (15)
us(t) =

with the four 3-vector-valued coefficients

by =r;, by (=r; + $At; - ¥;,

. . (16)

by =r;;1 — $At; - Viy1 and b3 =r; 1,
where the Bg’(s):(j’) - 89(1 — )77 denote the cubic
Bernstein polynomials (5 = 0,1,2,3).
obtain the rotation matrix R(¢) out of (3) with

Similarly, we

d(t) = 23: B (t — ti) 30 (17)
= i\ At J
with the four 4-vector-valued coeflicients
?(gi) =q;, ?1(i) =q; + 3At; - &, (18)
?;) = Qi1 — %Ati “€it1 and?éi) =qiy1-

The i-th spline segment satisfies the interpolation
conditions (9) and (10) for ¢t = ¢; and t = ¢;41. More-
over, it interpolates at Pos; and at Pos;;; the esti-
mated velocities and Euler velocities V;, V;11, €; and
€11, see (13).

The Euler velocities e; fulfill q;¢; = 0, ie,
they are tangential to the unit sphere of IR* at g,
(i =0,...,N). In addition we have q; q; = 1. Thus,
the interpolating Euler vectors d(¢) are almost nor-
malized everywhere. This ensures a relatively uni-

form distribution of the angular velocity of the inter-

polating motion.

An example of a rational spline motions obtained by
the above construction has been drawn in Figure 2a.
Six positions with equidistant parameters ¢; are inter-
polated. The TCPs of positions 3 and 4 are identical.
The TCP trajectory of the spline segment t3 <t < 14
is degenerated to one point. Similarly, the rotation
matrices of positions 2 and 3 are identical. The ro-
tational part R(¢) of the segment ¢ < ¢t < ¢3 is con-
stant.

The interpolating spline motion has been com-

puted with the value a = 1.2 of the tension parame-
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e

Figure 2: A rational spline motion which in-

terpolates six given positions

ter. In contrast to this, the dashed curve is the tra-
jectory of the TCP which is obtained with a = 0.3.
This curve is a lot closer to the polygon rg,ry,...,r5
than the original trajectory of the TCP.

In Figure 2b the interpolating motion is illus-
trated by some positions of the moving unit cube the
faces of which have been marked by crosses, squares,

and triangles.

3. Building the B-spline representation. The
TCP trajectory m(t) and the Euler vector d(t) (15)
and (17) are piecewise cubic polynomial C! vector—
valued functions. Hence, it is possible to represent
them as B-spline functions. Consider the 2NV + 2 B-

spline basis functions N 4(t), ..., Nan41,4(t) of order

four defined over the knot sequence

(to,..,to, t1,t1 , to,t 5.y tN—1,tN=1 ,tN,..,tN).
——— N S~ —_—— ——

4 fold double double double 4 fold
(19)

For more information concerning B-spline functions
see Reference 1 or a similar textbook on spline func-

tions. The trajectory of the TCP has the B-spline

representation
u (t) 2N+1
up(t) =1 and [wy(t) [ = Y. Nja(t)-b; (20)
j=0
U3(t)

with coefficients bo=bg(?), by 1=b1®), by o=by®,
(’LZO, P ,N—].) and b2N+1:b3(N_1),

the B-spline representation of the Euler vector is

Analogously,

given by
IN+1

dit) = > Nja(t)-f (21)
=0

(0)

with coefficients ?0:?00 #@)

) ?2i+1=?£i), fiso=f,
(i=0,...,N—1) and By 1 =Fo

If the spline construction is used as an interpreter
scheme of the given (e.g. taught) positions, then the
third step can be omitted. The third step is useful
for the off-line generation of the spline motion or for
some post-processing of the trajectories, as it leads

to a reduction of the required data volume.

Tracking the spline motion

We have to generate a sequence of positions relat-
ing to a certain time cycle A7 (typically about 16
milliseconds) for tracking the constructed spline mo-
tion by the end-effector of the robot. From these
positions the robot control computes the angles of
the robot joints and performs a fine interpolation. If
we use the motion parameter ¢ as the time it would

cause an undesired distribution of velocity along the
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path in general. Therefore, we have to apply an ap-
propriate reparameterization t = t(7) (which is as-
sumed to be continuously differentiable) relating the
motion parameter ¢ to the time 7. The reparame-
terization function ¢(7) increases monotonically and
satisfies £(0) = tg, i.e. the start position Posg corre-
sponds to the time 7 = 0. The velocities and acceler-
ations with respect to the real time 7 will be marked
by an asterisk *.

After the reparameterization, the absolute value
v*(7) of the velocity of the TCP is equal to

vi(r) = II%m(t(T))II = [[m’(t(7)|| - i(7),

where the dot * indicates the derivative with respect

(22)

to the time 7. Similarly, the absolute value w*(7) of

the angular velocity is

The vector @(t) is defined as in (6).

The reparameterization has to produce an almost
trapezoidal velocity distribution: segments with con-
stant speed are joined by segments with linearly vary-
ing speed distribution, cf. Figure 5. These velocity
profiles are required in many applications such as
welding.

The user can either specify the desired velocity of
the TCP or the desired angular velocity of the end-
effector. For most segments the user should specify
the velocity of the TCP as this is the more intuitive
measure of the robot speed. Whereas the speed con-
trol by the angular velocity has to be used for motion
segments with a constant TCP, like between Pos3 and
Posy4 in Figure 2. Analogously, the speed control by
the velocity of the TCP has to be used for motion
segments with a constant rotational part. (Motion
segments with both constant TCP and constant ro-

tational part have to be excluded. These segments

are recognized by the interpreter and not transferred
to the motion planner.) In order to see if the specified
speeds are realistic we check one segment in advance.
No global check is being applied as this would destroy
the local property of the tracking algorithm.
Consider the i-th segment ¢; < t(7) < t;11 of the

spline motion (i=0,...,N-1). If its motion speed is

governed by the TCP, then the user specifies the de-

> 0 and v} > 0 of the

. *
sired absolute values v i+1,p0s

i,5eg

velocity of the TCP in the interior of the segment and
at the segment’s end position Pos; 1. Otherwise the

user chooses the desired absolute values w?_.. > 0 and

%,5eg

wit1 pos = 0 of the angular velocity of the end-effector

in the interior of the segment and at the segment’s
end position Pos;y1. Note that m’(t;41) = 0 implies

Ufi1pos = 0, see (22), whereas & (ti11) = 0 implies

Wit1pos = 0, see (23). If the user does not specify

o). * *
a value for one of the velocities v} o, and vj 4 o5 OF

¥
1,5eg

*

and W;4 1, pos?

w then the scheme keeps the preced-
ing value.

We denote by t(¥) the parameter value after the k-
th time cycle, i.e., we set t*!) = (k- A7). In addition
to the specified velocities and angular velocities, one
has to choose the maximal and the minimal param-
eter stepsize Atmax and Atmin which are upper and
lower bounds of the differences ¢+ —¢() between
adjacent parameter values.

The user has to specify the maximal absolute val-

and « .. of the tangential components of

*
ues a ax

max

the acceleration and of the angular acceleration. We

compute the sequence of positions in such a way that

*

max and

the velocities always satisfy \d—v*(7)| <a
T

*

* *
max- Lhe values ay .. and o, are re-

d

—w (7)<«
()] <
lated to the actuator acceleration limits of the robot
by the Jacobian matrix. This matrix, however, de-

pends on the pose of the robot. In the current imple-
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*

mentation we use global bounds aj,,.

and o, for
accelerations. A more sophisticated possibility could
be to choose these bounds according to the geometry
of the robot’s position, and also depending on the
curvature of the robot’s path.

In order to realize the desired distribution of the
velocities we have to determine the positions where
the robot motion has to be accelerated or slowed
down. Taking only the tangential components of the
acceleration of the TCP and of the angular accelera-
tion of the end-effector into account, these positions
do only depend on the arc length of the trajectories.
Unfortunately, it is generally impossible to compute
the exact arc length of a cubic spline curve. We use
lower bounds for the arc length as numerical integra-
tions are too expensive for real-time calculations.

We outline the algorithm for one time cycle of the
path generation. The parameter value t*®) and the
corresponding position of the end-effector is assumed
to be known. According to the specified robot speed
we have to compute the next parameter value ¢t +1)
and the resulting position of the end-effector. Let i
be the number of the current spline segment (0 <
i < N), ie. t; < t®) < ¢;,1. If in this segment
the robot speed is governed by the velocity of the
TCP then the next position results from the following

computations:

1. Estimating of the current velocity. We es-
timate the real velocity vg_; o, of the TCP in the

previous time cycle:

* 1 —
Uk—1real = A" [m(t®)) — m(*-1)).

For the first time cycle (k = 0) we set v*; ,;=0.

2. Choosing the desired velocity. The next
desired TCP velocity of the TCP vz’spec is deter-

*

7 seg and

mined based on the user—specified velocities v

Ufi1pos- 1 the distance of m(t*)) to the segment

end point r;;1 is small enough, then the motion has
to be accelerated or slowed down in order to realize

the specified velocity v;41,pos at Pos;11, cf. Figure 3.

More precisely, if the inequalities vg_; o, > vy

2+1,pos
k+1
- mgt( )) start of slow down
m(t( - )) Q.... or acceleration
(5 N e
user—specified / specified
speed v; ., L.\ speed
.A."":‘o U;'k—}—l,pos
Tit1
r; critical distance

Figure 3: Tracking a spline segment

and
[m(t®)) —ripq|

((@Wh—sea)? = (V41,p05)?)

- *
2amax

hold, then we have to slow down the motion, hence

we set

* _ * * *
Uk, spec — Max {'kal,rea.l _amax'AT 3 'Ui—|—1,pos} . (24)

*

t+1,pos and

Otherwise, if the inequalities vi_; 0 <

Im (™) = rip

' ((I‘]z>'k—|—1,pos)2 - (UZ—l,real)Q)

- *
2amax

hold, we have to accelerate the motion:

* I * * *
Vg spec — 1IN {'kal,real + Qmax - AT ; 'Ui+1,pos} . (25)

These computations are based on the fact that the
distance |m(t*)) — r; ;|| is a lower bound for the
arc length of the trajectory of the TCP between the
points m(t(¥)) and m(t;y1) = r;;1, see Figure 3. In
order to get tighter lower bounds for the arc length
one may inscribe a polygon to the spline curve. By

using a few polygon points we can approximate the



Spline Interpolation for Industrial Robots

arc length of the trajectory with sufficient accuracy
in our implementation.

If the specified velocity Uk spec dO€s neither re-
sult from (24) nor from (25), then we try to real-

*

ize the desired velocity v7 .,

which has been specified
by the user for the interior of the spline segment. If
Vk_1real > Vigseg 10lds, then we slow down the robot

motion,

* _ * % . *
vk,spec = max {kal,real Qmax AT ’ Uz,seg}a

otherwise we accelerate the motion,
* _ . * * *
Uk, spec — 1IN {Uk:—l,real + Gpax At ) Uz',seg}'

3. Computing of the next position. We com-
pute the next parameter value t**1) and the corre-
sponding position of the end-effector. The parameter

value t**1) should satisfy
||m(t(k+1)) - m(t(k))H = Ar - Ult,spec

This non-linear equation for {**1) is approximately

solved. Let At(k) = ¢(k+1) (k) We choose the initial

guess

*
Uk,spec

(%) = mi . _k.spec
Aty = min { At Tl (] °

Atpmax }-

Afterwards we apply a few steps of the Regula falsi
(method of false position):

Atk =
Atk AR
Y= g 3 A tmas }
[m (%) —m(t*) + AtlE) ) ||
(=0.1,2).

min{

The accuracy should now be sufficient, otherwise one
may iterate the Regula falsi. We compute the next

parameter value

t®+) = min {t® + max {At®)g5 | Atmin}, ty}

We have to increment the current segment number 4
if ¢t > ¢, 1 holds.

The tracking of the rational spline motion is com-
pleted for i = N.

We compute the position m(¢(*)) of the TCP and
the corresponding rotation matrix R(t()) from the
equations (15) and (17) or from (20) and (21). The
evaluation of the (piecewise) polynomials in these
equations and their derivatives should be done with

the help of the de Casteljau or de Boor algorithms!.

If the control of the robot speed of the i-th seg-
ment is based on the specified angular velocities
instead of the specified TCP veloci-
of the TCP, then the next posi-

* *
wi,seg’ wi—|—1,pos

ties v} geq) Uit 1 pos
tion of the end-effector results from another algo-
rithm which is completely analogous to the previ-
ous one. In this case one has to use the normal-
ized Euler vector (||d(¢®))[))~'-d(¢®)) and its deriva-
tive with respect to ¢ instead of the position m(t(¥))
of the TCP and its derivative m'(¢(%)), Addition-
ally, the distance ||m(t*)) — r; ;1| between two ad-
jacent TCP positions must be replaced by the angle
2 - arccos [(||€1(t(’“)||)_1 -a(t(k))TfjiH] of the corre-
sponding rotation R(t*))~'. S;, ;. For the sake of
brevity we omit the details of the algorithm.

In Figures 4 and 5 we present an example for
the construction of a rational spline motion and its
tracking by using the above-described method. The
seven taught positions have been drawn in Figure 4a,
whereas Figure 4b shows the resulting spline motion.
The units of the three coordinate axes are 1 mm.
The six spline segments (marked by <1>...<6>)
are to be tracked with different velocities of the TCP.
In Figure 5 we show the desired velocities (in grey)
and the resulting velocity after the reparameteriza-

tion (in black). Both curves are almost identical. An

10
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Figure 4: Tracking a rational spline motion: a)

the taught positions, b) the spline mo-

tion.

almost trapezoidal velocity profile has been achieved
between the desired values for the speed as specified
by the user.

In principle, the above-described track-
ing method can be applied to any other Cartesian
path description of the robot, provided that points
and derivatives can be computed fast enough. As a
matter of future research one should derive tighter

bounds a*

max and o, for the tangential accelera-

tions which depend on the robot’s position and on
the curvature of its path. This would produce a more
sophisticated method for dealing with dynamical ef-

fects.

An application

The interpolation and tracking algorithms described

in the previous sections have been implemented as

11
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Figure 5: Tracking a rational spline motion: the

velocity after the reparameterization.

a part of a new robot controller. Its prototype has
been presented at the Hanover Industrial Fair in April
1996. We illustrate it with an example.

This application is taken from a welding task at
Odense Steel Shipyard (OSS), a Danish company pro-
ducing large container vessels. Only ship assemblies
consisting of plane segments and straight lines have
been welded up to now. The goal in future is to weld
also highly complex geometries containing advanced
multi-layer welds. Pipe welding is considered as one

of the most complex welding tasks.

Figure 6: Intersection of two pipes forming a
complex saddle type curve. The weld-
ing gun is attached to the robot’s

flange.

OSS processes up to 45 000 pipes per year. Each
pipe consists of two or three different weld types. A
lot of them are multi-pass welded with a butt joint in
a 3—dimensional curved geometry with full penetra-
tion (see Fig. 6). For this task an appropriate robot
has been designed: A gantry system (3 translational

degrees of freedom) with an attached vertical arm
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(3 rotational degrees of freedom) as shown in Figure

7. In addition there is a turn/tilt table in the work

Figure 7: Robot cell at OSS for pipe weld-

ing applications.

space in order to turn the pipe into a configuration on
which welding from the top should be possible. (This
robot configuration is just an example. We have also
tested the spline scheme for more complicated robot

geometries including 6R manipulators.)

Pos 0 = Pos 16
S _ N o =
Pos 1

Pos 15

-100 100

-100*"

-100

Figure 8: A realistic example. a) The taught
positions, b) the interpolating spline

motion.

An interpolating spline motion is programmed for
this complex curve. The robot program consists of 17
taught positions taken out of a database which con-

sists of nearly all possible welding tasks (Figure 8a).

12

Figure 8b shows the resulting spline motion. We omit
the plot of the (almost constant) velocity distribution
after the reparameterization as there is virtually no
difference between the real and the desired speeds.
In this application, using spline interpolation in-
stead of linear or circular interpolation reduces the
number of required taught positions to approximately
30%.

smoother and the resulting movement of the robot

Moreover, the interpolating motion is much

can be performed with higher speed. Therefore, us-
ing the spline interpolation leads to a reduction of
costs and working time required for the robot pro-

gramming, and moreover to an increase of productiv-

ity.
Concluding remarks

The work described in this paper intends to be a
first step towards the use of Computer Aided Design
methods in order to solve problems which do arise
from Robotics and Kinematics applications. The re-
sults of user tests with a prototype implementation
look promising. These tests have shown several ad-

vantages compared to the traditional method:

o ease of programming (less teach points are neces-

sary),

o higher speed since design of C' motion,

o less mechanical stress since design of C' motion,
o faster optimization of robot programs.

Future points of interest include

o the direct integration of CAD data into the process
of robot programming. This can be done in two

different ways. One simple approach is to use the
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CAD data for generating positions for the “teach- References

in” method. As an advantage of this approach the
user can easily modify the resulting robot motion.
However, the more direct approach would be to
use the curve description of the CAD data directly
for the robot control. Both approaches require ad-
ditional information about the desired orientation
of the end—effector which is generally not obvious
from the current CAD data interfaces. CAR (Com-
puter Aided Robotics) tools like IGRIB or ROB-
CAD should offer interfaces for incorporating ratio-
nal motions into their systems in the future. There-
fore more sophisticated calibration techniques need
to be developed to enhance the model fidelity of

robotic systems.

o the optimization of spline motions taking into ac-
count robot dynamics (time or energy optimal)
Known methods (see for example the textbook by
Pfeiffer and Reithmeier'?), in general used for cir-
cular and linear motions can be applied for spline
motions as well. Due to the high computational
complexity this optimization needs to be calculated

off-line (before the robot motion starts).

The authors are not aware of any other commer-
cial system applying the described geometric methods
from Computer Aided Design in the field of robotics
and believe that this approach will open new possi-

bilities in the future.
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