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Abstract

We develop methods for the variational design of algebraic curves.
Our approach is based on truly geometric fairness criteria, such as the
elastic bending energy. In addition, we take certain feasibility criteria
for the algebraic curve segment into account. We describe a compu-
tational technique for the variational design of algebraic curves, using
an SQP (sequential quadratic programming) – type method for con-
strained optimization. As demonstrated in this paper, the powerful
techniques of variational design can be used not only for parametric
representations, but also for curves in implicit form.

Keywords. Variational design, algebraic curves, implicit representa-
tion.

1 Introduction

For parametric curves and surfaces, the various techniques of variational

design are now widely being used in geometric modeling [2, 5, 6]. These
techniques have been highly successful in various applications, including scat-
tered data fitting (e.g. for reverse engineering), where they help to generate
high–quality curves and surfaces from measurement data (point clouds).

Implicitly defined curves and surfaces have several potential advantages.
For instance, surface–surface intersections can easily be traced if one surface
is given in implicit form, and the other surface by a parametric representation.
Also, the algorithms for curve and surface fitting do not assume the existence
of a parameterization of the data, which is often difficult to generate, in
particular for more complex data sets (see [8, 9] and the references cited
therein).
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Variational design of curves and surfaces in implicit representation, how-
ever, has not attracted much attention so far. Similar to the parametric case,
such techniques are needed in order to improve the quality of the results.

This is closely related to level set methods which use geometric criteria
for controlling the evolution of a curve (or surface) [12]. Typically, these
techniques are based on the local behavior of a curve (e.g. depending on
curvature).

Based on globally defined, truly geometric fairness criteria, such as the
elastic bending energy (cf. [3]), we discuss a method for the variational design
of algebraic curves. In addition to the fairness measures, our objective func-
tion also takes certain feasibility criteria for the algebraic curve segment into
account. We develop a computational technique for the variational design of
algebraic curves, using an SQP–type method for constrained optimization.

2 Fairness Functionals for Planar Curves

Following the notations introduced in [11], we use the Bernstein-Bézier repre-
sentation of the algebraic curve segment with respect to a fixed basis triangle
4v0v1v2 ⊂ R

2. Throughout this paper, we consider a segment of an alge-
braic curve of order n. This segment is a part of the zero contour of a
polynomial G of degree n,

C̃ = {p | G(p) = 0 and p ∈ D} (1)

where the domain D (which is to satisfy 4v0v1v2 ⊂ D) is the strip bounded
by two parallels through v0,v1 with the direction of a suitable unit vector
~r = (r1, r2). The end points of the curve segment are the vertices v0 and
v1, and the lines v0v2, v1v2 of the domain triangle are assumed to be the
tangents at these two points.

In order to obtain curves which are useful for geometric modeling, we
assume that there exists a curve segment which has the shape of a single
arc C connecting v0 and v1, without singularities along this arc, such that
C ⊆ C̃. Suitable feasibility criteria, which are needed in order to achieve and
to maintain this shape during the optimization, will be discussed in Section 3.

We consider G as a linear combination of Bernstein-Bézier polynomials
over 4v0v1v2 with coefficients

b = (bi)|i|=n, i∈Z
3
+
∈ R

dn where dn =
(

n+2
2

)

. (2)
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Figure 1: Left: boundary values of Bernstein-Bézier coefficients; right: pa-
rameterization of the segment as a graph of a function.

As a necessary condition for the end point and the end tangent property, the
Bernstein-Bézier coefficients bi satisfy

bn,0,0 = bn−1,0,1 = b0,n,0 = b0,n−1,1 = 0, (3)

(see Figure 1, left). These conditions are also sufficient, provided that both
segment end points are non-singular.

2.1 Parameterization

In order to evaluate the various quantities needed during the optimization
process (bending energy and its derivatives), we need a parameterization of
the curve segment C. This parametric representation has the form c(t) =
(x1(t), x2(t)) for t ∈ I, where I = [0, 1] is the parameter interval, and

G(c(t)) = 0 for t ∈ I. (4)

Clearly, such a parameterization is generally not available in closed form;
only a numerical approximation can be given.

According to a well–known result from the theory of elastic curves, these
curves can turn at most by angle of π (see e.g. [3]). Motivated by this fact,
we assume that the curve segment C is a graph of a function, where the “y–
axis” has an appropriately chosen direction ~r, such that it is contained in the
wedge spanned by the vectors v2 − v0 and v2 − v1. Under this assumption,
the parameterization of the algebraic curve can be obtained by projecting
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it parallel to ~r onto the edge v0v1 of the basis triangle. Consequently, the
parametric representation has the form

c(t) = (x1(t), x2(t))
> = (t, 0)> + y(t)~r, t ∈ [0, 1], (5)

where y(t) is one of the n roots of the bivariate polynomial G(p) along the
line (t, 0) + λ~r. Clearly, one has to pick the “right” root among the possibly
n different ones. For the sake of further computation, we need the function
y(t). Since G is a polynomial and since we suppose that no singular points
along the curve segment C exist, the function y(t) is C2 in [0, 1].

The ordinate y of a point c(t) depends both on the abscissa t and Bern-
stein-Bézier coefficients b. During the optimization we will need the deriva-
tives of y = y(t,b) with respect to both quantities. However, the result of
the optimization itself depends only on the control coefficients vector b. In
order to keep the notations simple, let F (x1, x2,b) be a function such that

F (x1(t,b), x2(t,b),b) = G(c(t)) = 0, (6)

see (2),(4) and (5). Similarly,

Fi = ∂F/∂xi and Fij = ∂2F/∂xi∂xj for i, j ∈ {1, 2}. (7)

The proof of the following lemma follows from the implicit function theorem.
Lemma 1 The derivatives of the abscissa y = y(t,b) with respect to the
parameter t and with respect to the coefficients in b = (bi)|i|=n, i∈Z

3
+

can be

computed by differentiating (6). All these derivatives exist, provided that F
is sufficiently often differentiable, and r1F1 + F2 6= 0.

2.2 Bending energy and objective function

We consider the bending energy

fbend(C) =

∫

C

κ2 ds, (8)

of a planar curve segment, where κ and s are the curvature and the arc
length parameter. Clearly, this is a geometrically invariant fairness measure,
independent of the parameterization.

The curves minimizing (8) are called elastica. There exists no unique
minimizer to G1 Hermite boundary data. Instead, there exists a sequence of
local minima with different lengths. See e.g. [7] for additional information.
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The objective function takes the form

f(b) = fbend(C) =

∫

C

κ2ds =

∫ 1

0

[ċ, c̈]2‖ċ‖−5dt (9)

where [~a1, ~a2] = det(~a1, ~a2). We will need the first and second derivatives
of f with respect to bi and t during the optimization process. They can be
evaluated by applying the differentiation to the function under the integral
in (9). For the sake of brevity, we omit the details (see [4]).

To do the optimization, we map any polynomial to the coefficient space.
Any polynomial of degree n corresponds to a point b ∈ R

dn (see also (2)).
Conversely, each point of b ∈ R

dn −{~0} represents some homogeneous poly-
nomial of degree n.

Further properties of the objective function f can be deduced from the
boundary conditions for segment C and the fact that the function G(p) is
polynomial. Since four coefficients vanish (see Figure 1, left), it suffices to
optimize just in the subspace of R

dn given by (3). Moreover, the objective
function is a homogeneous function of order 0, i.e.

f(kb) = f(b) (10)

for all k 6= 0. More precisely, the objective function is geometrically invariant,
i.e. it is not changed by multiplying the equation of the algebraic curve by a
non-zero constant k, since the zero contour does not change.

Due to the homogeneity of the objective function, the coordinates of the
point b (representing the algebraic curve) can be normalized by choosing
some of its non-zero coordinates (see Figure 1, left).

3 Minimization of fairness functionals

Clearly, the minimum of a highly non-linear function cannot be calculated
directly. Hence, we approximate the original function with a sequence of
simpler functions, for which the minimum can be calculated. This leads to
the sequential quadratic programming (SQP)-type method which is based on
a local quadratic approximation.

We introduce the notion of the feasibility for the algebraic curve.
Definition 1 An algebraic curve given by (1) is feasible, if the following
three conditions are met
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(i) boundary conditions: It satisfies the prescribed G1 boundary con-
ditions at the endpoints

(ii) functionality: The part of the curve between endpoints can be pa-
rameterized as in (5) using the chosen direction ~r

(iii) regularity: The parameterized part of the curve contains no singular
point (in the sense of algebraic geometry).

Note that he parameterization (ii) can be assumed to exist since the
tangent of an elastic curve turns at most by π (see [3]). Even if this condition
is not satisfied, the methods described in the remainder of this paper can be
extended to the general case, by combining several local parameterizations.1

In the sequel, we assume that the initial algebraic curve for the optimiza-
tion meets the feasibility requirements. Consequently, we have a segment
c0(t) (described by the Bernstein-Bézier coefficient vector b0 over the trian-
gle), which is a graph of a function with respect to the chosen direction ~r.
We are looking for the minimum of f(b) with respect to the control points,
such that the feasibility conditions are still satisfied.

The algorithm calculates a sequence of curves represented by coefficients

b0,b1,b2, . . . ,bh, . . . for h ∈ Z+, (11)

such that the conditions of the Definition 1 are always fulfilled. hence, each
curve segment can be parameterized by ch(t). Moreover, the values of the
function f evaluated on the curves converges monotonically to a local mini-
mum.
Algorithm 1 The sequence (11) is generated by the following iteration:

1. Approximate the objective function f(b) by a quadratic function qh(b)
in the neighborhood of point bh.

2. Find the extremum b∗ of the quadratic function qh(b).

3. Choose the step size τh+1 ∈ R and find the next point from

bh+1 = (1 − τh+1)bh + τh+1b∗ (12)

such that the feasibility is maintained.
We use Gaussian quadrature to evaluate the integrals during the mini-

mization. The details of the minimization algorithm are omitted due to space
limitations, see [4].

1More precisely, we can always guarantee that such a parameterization exists locally
in a neighborhood of a regular point on the curve. Therefore, if the initial curve segment
do not satisfy this property, we can split it to several pieces so that they already do.

6



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.4 -0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.4 -0.2 0.2 0.4 0.6 0.8 1 1.2 1.4

2 4 6 8 10

5

6

7

8

9

iteration

bending

energy

(a) (b) (c)

Figure 2: An optimization of a cubic curve. Bending energy for the thick
part of the curves: fbend = 9.18 (a), fbend = 4.96 (b). Convergence of the
bending energy to minimum (c).

As a first example, this fairing has been applied to the cubic algebraic
curve which is shown in Figure 2, left. The value of the bending energy
for the initial curve segment is equal to 9.18. After several iterations we
arrived at a curve with energy 4.96. The values of the bending energy for
the sequence of curves generated during the fairing are shown in Figure 2 c.

Unfortunately, the solution of a quadratic approximation of the (9) often
produces infeasible curves. The curve may not be a function in the direction
~r or it may have singularities. We use two different techniques to resolve
these problems.

First, in order to maintain the functionality of the curve segment, we re-
strict the domain of the optimization. This is achieved by choosing the step-
size in each iteration accordingly. More precisely, we use a Runge-Kutta-type
method for tracing the candidate curve and use binary search for choosing the
correct stepsize. Clearly, this approach keeps the functional shape property.

Second, we use a penalty function for avoiding curves with singularities.
It keeps the solutions (11) away from the points in RP

dn−5, which represent
curves with singularities along the considered arc C. Clearly, the additional
term in the objective function will cause an increase of the bending energy
for the final curve.

To avoid points where both partial derivatives, G1 and G2 vanish, we
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have chosen the penalty function

fpenalty(C) =

∫

C

P (c(s))−2 + (P (c(s)) − 1)2ds, (13)

where

P (x1, x2) = D~nG(x1, x2) and ~n = ∇G(x1, x2)‖∇G(x1, x2)‖
−1, (14)

and D~n is the directional derivative operator in the direction ~n. That is, we
keep the directional derivative of G(p) in each point of the segment C in the
normalized gradient direction far away from zero and close to 1 (without loss
of generality).

The evaluation of the (13) and its derivatives with respect to the coeffi-
cients bi is similar to the evaluation of (9).
Lemma 2 If the point b0 ∈ RP

dn−5 represents an algebraic curve C which
satisfies the conditions (1) and (2) of the Definition 1 with a singularity on
C, then the function fpenalty(C) defined by (13) has a singularity in the point
b0 and

lim
b→b0

fpenalty(b) = +∞ (15)

Proof: Let {bi}
∞
i=1 ⊂ RP

dn−5 be a sequence of points representing regular
algebraic curves as in (6), such that

lim
i→∞

b = b0. (16)

Let ci(s) be the natural parameterizations of the curves in the neighborhood
of ci(0) and ci(0) → p, where p is a singularity on C. Since the convergence
of the curves ci towards the singular limit curve C is uniform and ∇F is
continuous, for some ε > 0

lim
i→∞

∫ ε

0

‖∇F (ci(s))‖
−2ds = +∞ (17)

and (15) follows easily. �

Consequently, the modification of the objective function leads to

f(b) = fbend(b) + αpenaltyfpenalty(b) (18)

with a non-negative weight αpenalty.
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Figure 3: Influence of the weight α = αpenalty. High values of α (right)
keep singularities (more precisely: vanishing gradients) farther away from
the segment C. However, the energy of the curve is increased in this case.
Note that the range and distance of the level curves (algebraic offsets) are
identical.

Corollary 1 The algebraic curve minimizing (18) has no singularities along
the considered curve segment.

Clearly, the influence of the penalty function can be controlled by the
weight. This is demonstrated by Figure 3. We started the optimization with
the curve segment shown on the left. The middle and right figures have been
obtained after two steps of the iteration with weights αpenalty ∈ {1.5, 50.0}.
Note the different shape of the level curves (algebraic offsets).

The example in the Figure 4 illustrates the fairing of a quartic algebraic
curve. We fair the curve in Figure 4, (a) which has a bending energy fbend =
67.92. Figure 4, (b) shows the result of the fairing with weight αpenalty = 0.5.
The bending energy decreases to fbend = 4.1. This is to be compared with
the quartic polynomial approximation2 of the elastic curve in Figure 4, (c)
with bending energy value along the considered segment 5.41.

2It has been generated with the help of numerical optimization where the cubic Hermite
interpolant served as an initial value.
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Figure 4: Fairing an algebraic curve segment using the penalty function (a):
initial curve, (b), optimized algebraic curve, (c) dashed line curve – degree 4
polynomial which minimizes the bending energy.

4 Algebraic Curve Shaping

Variational modeling comprises the shape optimization of objects subject to
geometric constraints. We use the numerical technique to solve the following
problem: Find an algebraic curve segment, such that

1. it interpolates given points and tangents at them,
2. the curve is as fair as possible (cf. Section 2.2), without singularities,
3. the curve is pulled toward chosen fixed point p.

This leads to the optimization problem presented in Section 3, with an
additional term responsible for the condition 3.

Let p = [x̄1, x̄2]
>. As a naive idea, the additional term of the objective

function could be chosen an expression G(x̄1, x̄2)
2. This is called the algebraic

distance of a point p from the curve G = 0. Unfortunately, this approach
does not work in those cases, where another branch of the algebraic curve is
present in a neighborhood of the point p (see e.g. Figure 5, right). Clearly,
in this case the algebraic distance might be measured with respect to the
wrong branch.

As a more geometrically oriented approach we use, is the squared distance
of p from the segment C,

fpull(C) = ‖(c(sp) − p)‖2 (19)

where the point c(sp) is the footpoint from the point p with the minimum
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Figure 5: The pulling of the algebraic curve segment towards a point

distance property

‖c(sp) − p‖ = min
s∈I

c(s) is footpoint from p

‖c(s) − p‖. (20)

We assume, that the footpoint exists, otherwise we take either the closest
point on the segment C or the point which forms a minimal angle of vectors
p− c(s) and the ∇G(c(s)). Hence, the final form of the objective function is

f(b) = fbend(b) + αpenaltyfpenalty(b) + αpullfpull(b). (21)

The examples of such optimization for various points p can be seen in
the Figure 5. The initial curve segment (see Figure 4, left) was pulled to-
ward three different points [0, 0.8] (left),[ 1

3
, 0.8] (middle) and [0.6, 0.8] (right).

The final bending energy resp. squared distance of the point p to the curve
segment rich the values fbend = 10.04, fpull = 0.06 (left), fpull = 0.001,
fbend = 12.44 (middle) and fbend = 8.44, fpull = 0.18 (right). The correspond-
ing weights in the objective function (20) are (αpenalty, αpull) = (0.00001, 350)
(left), (αpenalty, αpull) = (0.0001, 300) (middle) and (αpenalty, αpull) = (0.03, 80)
(right).

Clearly, the results of the fairing process can be further controlled by the
ratio of the parameters 1 : αpenalty : αpull to balance the curvature and the
closeness of the curve to the chosen point p. We can try to pull the curve as
close to the point p as possible with raising the weight αpull. The bending
energy usually raises considerably as the curve gets closer to the point p.

Experiments with different weights in the objective function are shown in
Figure 6. The same initial segment as in Figure 5 was used in both cases. For
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Figure 6: Adjusting the pulling weight in the objective function. By increas-
ing the pulling weight, the point is brought closer to the resulting curve.

the left figure, (αpenalty, αpull) = (0.05, 100), the square of the final distance
increased to fpull = 0.06 and the bending energy decreased to fbend = 9.73.
For the right figure, (αpenalty, αpull) = (0.0001, 750), the final bending energy
is fbend = 12.44 and fpull = 0.001.

5 Conclusions and Future Work

We have presented a method for variational design at algebraic curves. By
applying our method to an algebraic curve, it is possible to get a fair algebraic
curve segment without singular points and minimal bending energy. More-
over, the algorithm can be extended by additional tools, such as pulling, for
designing algebraic segments. All tools are configurable by parameters with
intuitive meaning. As a novel approach, we demonstrated, that regularity of
the curve can be guaranteed by suitable modification of the objective func-
tion (penalty function). The alternative technique is the use of discriminating
families (see [1, 13, 14]).

There are several possible extensions. Firstly, the method could be ap-
plied to algebraic splines (i.e. piecewise algebraic curves). In addition to
applying fairing process to the polynomial pieces, one needs to find an ap-
propriate way of minimizing curvature discontinuities, which occur – in the
G1 case – at the boundaries of the polynomial segments. This seems to be a
non-trivial task.

Another challenging problem is the extension to the case of algebraic
surfaces, where the minimization itself is less well understood. The existence
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of the minimum for Willmore-type energies for certain classes of surfaces
is known (see e.g. [10]). In the surface case one has to deal with more
complicated domains, which causes many technical difficulties.
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