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Abstract

The article derives a method for matching G' Hermite data with
Pythagorean hodograph cubics. We give a thorough discussion of
the existence of solutions. This leads to a method for converting
arbitrary space curves into cubic PH splines with the help of the
Hermite interpolation procedure. Finally, the construction of ratio-
nal frames for PH curves and rational approximations of rotation
minimizing frames are outlined. The results have applications for
sweep surface modeling in geometric design.

1 Introduction

Pythagorean hodograph (PH) curves are a special class of polynomial
curves. They are characterized by the fact that their hodograph (that is,
their tangent vector) corresponds to a rational curve on the unit sphere.
This leads to a number of nice properties. For instance, the arc length of
a PH curve is a polynomial function of the curve parameter.

Pythagorean hodograph curves have been studied in a number of publi-
cations by Farouki and co-authors, see e.g. [5]. A number of interpolation
scheme for PH curves is available. Interpolation of planar G' Hermite
data with planar PH quintics has been discussed in [4]. A construction
for planar C? PH spline curves from point data has been developed by
Farouki and Albrecht [1]. In addition, Wagner and Ravani [16] present
a method for matching spatial G' Hermite data with PH space cubics.
Their approach is based on certain geometric properties of the Bézier
control polygon of PH space cubics which were revealed by Farouki and
Sakkalis [5].

In the first part of paper we present another approach to G' Hermite
interpolation with spatial PH curves. The hodographs of the PH curves are
constructed at first; they describe rational curves on the unit sphere. Our
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method is based on the generalized stereographic projection, see [3]. This
mapping is very powerful tool for constructing rational parameterizations
of quadric surfaces. As the main result, we obtain a simple characteri-
zation of feasible G' Hermite data for interpolation with PH cubics; the
difference vector of the segment end points has to be contained within a
certain quadratic cone which depends solely on the tangent vectors. As a
consequence from this characterization of feasible data it is shown, that
any space curve without flat points (i.e., k # 0) can be approximated by
a G' cubic PH spline curve as accurately as desired, provided that the
number of segments is chosen big enough.

In the second part of the paper we give an outline of the construction of
rational approximations to the rotation minimizing frame (cf. [11]) of a PH
spline curve. This frame is used for generating so—called sweeping surfaces.
Such surfaces are interesting for geometric modeling applications; they are
generated by moving a profile curve along a given spine curve.

The rotation minimizing frame of a curve has been introduced into
computer aided geometric design by Klok [11]. He constructs a piecewise
linear surface which approximates the rotation minimizing sweeping sur-
face. Recently, a more sophisticated method has been proposed by Wang
and Joe [18]. Firstly, they convert the given curve into a biarc spline
curve. Then, the sweeping surface is approximated by segments of sur-
faces of revolution which are pieced together to form a G! surface. Of
course, the spine curve the resulting surface is piecewise planar curve.

With the help of PH spline curves it is possible to construct rational
approximations to the rotation minimizing frame with non-—planar spine
curves. Firstly it is shown, that any PH curve has an associated ratio-
nal frame. The existence of such a frame has already been observed by
Farouki and Sakkalis [5]. Our proof is based on the very close connection
between the generalized stereographic projection and the so—called Euler
parameters of orthogonal matrices. It leads to an explicit formula for the
possible rational frames of PH curves.

An approximation to the rotation minimizing frame of the curve can
now be constructed by composing the rational frame of the PH curve with
suitable rotations around the tangent. This leads to rational approxima-
tion of the rotation minimizing frame, hence to approximate rational rep-
resentations (that is, NURBS representations) of the generated sweeping
surfaces. The method is illustrated by an example.

2 Preliminaries

In order to make this article self-contained we briefly summarize some
results from [3] concerning the construction of rational curves on the unit
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sphere.

Points in Euclidean 3-space will be described by their Cartesian coor-
dinates y = (1 42 3 )7 € IR®. Sometimes, however, it will be advanta-
geous to use the so—called homogeneous coordinates ¥ = ( §o 91 %2 U3 )"
instead, where ¥ # (0 0 0 0)". The last three components of the homo-
geneous coordinates will be collected into the vector ¥ = ( 4, 72 ¥3 ).
For homogeneous coordinates with ¢, # 0, the corresponding Cartesian
coordinates can be obtained from

y=sg=(9 2 by (2.1)
Yo Yo Yo Yo
On the other hand, consider a given point with the Cartesian coordi-
nates y. For any real A\ # 0, the set of linearly dependent homogeneous
coordinate vectors Ay with 4, = 1 and y = y describe this point.

Homogeneous coordinate vectors with ¢ = 0 correspond to points
at infinity; they can be identified with the equivalence classes of parallel
lines. By introducing the points at infinity, we use the projective exten-
sion of Euclidean 3-space. See [14] for more information on the use of
homogeneous coordinates in geometry.

In order to construct rational parameterizations of the unit sphere

vitys+ys =1, (2.2)
or, if represented in homogeneous coordinates,

91+ %2 + 5 = Go, (2.3)
the so—called generalized stereographic projection § has been introduced

by Dietz et al. [3]. It maps the point p = ( fo p1 P2 P3 )’ to the point
with the homogeneous coordinates
B + Bt + 53 + B3
- 2pop1 — 2p2Ds
W)= 25ipy + 20 | (24)
i+ P — Py — s
As the homogeneous coordinates y = §(p) fulfill the equation (2.3) of the
unit sphere, the mapping J maps any point p to a point on the sphere.
The mapping § can be thought of as a generalization of the stereographic
projection; if it is restricted to the plane p3 = 0 then we get the stereo-
graphic projection with the centre n = (1 0 0 1)" at the ‘north pole’ of
the sphere; each point p of the plane is mapped to the intersection of the
line passing through n and p with the sphere.
Of course, the mapping 0 cannot be a one-to—one mapping, as the
sphere is a 2-dimensional manifold. Consider all points in 3—space which
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are mapped to a certain point ¥ = ( §o §1 §2 73 ) ' on the sphere. It turns
out that all these points form a line in 3—space. This line will be called a
projecting line of the generalized stereographic projection. If ¥ is not the
north pole of the unit sphere, then the projecting line is

Ao(y)+pup(y) (ApelR) (2.5)

where o(¥) and p(¥) are the two points

Yo — U3 0
~\ gl d ~\ g? 2
o¥) =1 = and p(y) = | - (2.6)
Y2 751
0 Yo — U3

in 3-space. In fact, a short calculation confirms that

S(Aa(¥)+upF))=2N+u) (Jo—10) ¥, (2.7)

provided that the point y fulfills the equation of the unit sphere. The
inverse image of the north pole is the line at infinity of the plane p; = 0,
i.e., it is given by all points (0 p; p» 0)'. The system projecting lines form
a so—called elliptic linear congruence of lines, see [3] for more details.
Consider a segment of a spherical rational curve of even degree 2n.
With the help of homogeneous coordinates, it can be represented as

y(t) = i_nj & B™(t), telo1], (2.8)

with the Bernstein polynomials Bf(t) = (’l“)tl(l — t)¥=. Tts four com-
ponents §o(t), ..., ys(t) are polynomials of degree 2n in Bernstein—Bézier
representation, see [7]. The coefficient vectors & € IR" are the weighted
control points of this representation, where the components ¢;( are the
weights. The curve (2.8) is a spherical curve if and only if its components
fulfill the equation of the unit sphere (2.3) for all ¢ € R.

According to an algebraic result on Pythagorean quadruples in poly-
nomial rings, any spherical rational curve of degree 2n can be constructed
by applying the generalized stereographic projection 0 to a space curve

p(t) = zn:&i BM(t), te€][o0,1], (2.9)

of degree n, see [3]. For instance, any circle (which is a rational spherical
curve of degree 2) can be obtained simply by mapping a line (represented
as a rational Bézier curve of degree 1) to the sphere.
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Let ¢ be an angle with 0 < ¢ < 7 and let ¢ = cos¢ and s = sin ¢.
Consider the two points

to = and t; = (2.10)

o »w O

Cc

on the unit sphere. There is a one—parametric system of circular arcs
connecting both points. Each circular arc can be described by the homo-
geneous coordinates of a spherical rational curve of degree 2. For each
circular arc, this representation provides another two degrees of freedom.
The first one is due to the different parameterizations of the circular arc.
The second one results from possible scalings of the homogeneous coordi-
nates. Thus, we have a 3-—parametric system of homogeneous coordinates
for the quadratic rational representations of the circular arcs connecting
to and t;. These possible representations can be constructed by applying
the generalized stereographic projection 0 to one of the line segments

Paww(t) = (1 —t)vo(to) +tw (o(ty) + Ap(t) ), telo,1]. (2.11)

The three parameters A\, v, w represent the three degrees of freedom. The
weights v # 0 and w # 0 control the different parameterization and the
possible scaling of the homogeneous coordinates of the circular arc. The
parameter \ selects one of the possible circular arcs through the points tg
and t;. A short calculation leads to the rational Bernstein-Bézier repre-
sentation of these circles,

Y(t) = 6(Pyvw) = Bi(t) € + Bi(t) &1 + B3 (1) €2 (2.12)

with the three control points

Co=2v"(1—-c)ty, E=2w?(N+1)(1-c)ty, (2.13)
and
C
¢t =2vw(c—1) )\08 (2.14)
1

An example is shown in Figure 1. It shows some of the circular arcs
which connect two points on the unit sphere, and also the Bézier control
polygons of the corresponding rational Bézier curves of degree 2. The
possible middle control points ¢; belong to the line where the tangent
planes of the sphere at t; and t; intersect. The representation (2.12),
(2.13) of the system of circles connecting the points t, and t; will be used
for constructing cubic PH spline curves from G' Hermite data.
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FiGUurRE 1. Bézier representation of the circular arcs connecting two
points on the sphere.

3 PH curves

Consider a polynomial (also called an integral) Bézier curve of degree n,
x(t) = 3 bi BI(t), telo,1]. (3.1)
=0

with the control points b; € IR?, see [7]. A remarkable class of these
curves is formed by the so—called Pythagorean hodograph (PH) curves,
which have been studied by Farouki and co—authors in a number of pub-
lications [1,4,5]. They are characterized by the property that the length
of the first derivative vector x(t) = d/dt x(t) is a polynomial function of
the curve parameter t. Thus, the components 1, Z9, 23 of the derivative
belong to a Pythagorean quadruple; they satisfy the Diophantine equation

i1 (8)? + d2(t)? + 23(t)* = p(t)?, (3.2)

where p(t) is certain polynomial. As a consequence, the arc length of a
PH curve is a polynomial function of the curve parameter; it is obtained
as the integral of the polynomial p(t).

Owing to (3.2), the curve with the homogeneous coordinates

y(t) = (p(t) 1(t) @2(t) 23(t) )" (3-3)

is a spherical rational curve. Thus, as any spherical rational curve can be
constructed by applying the generalized stereographic projection ¢ to a
space curve, we have the following result:



B. Jittler 7

Lemma 1. Consider a spatial rational curve p(t) of degree n, cf. (2.9).
By applying the generalized stereographic projection ¢ to this curve we
obtain a spherical rational curve ¥(t) = §(p(t)) of degree 2n. Let L(t)
be a polynomial of degree k, and let x, € IR® be an arbitrary point. The
spatial curve

x(t) = %o + /0 L) §() dr (3.4)

is a Pythagorean hodograph curve of degree 2n + k + 1. Here, the inte-
gration is applied to the three components of the vector L(T) ¥(7), and ¥
is the vector (1 72 3 ) .

Due to the algebraic properties of the mapping §, any PH curve can be
obtained from this construction. More precisely, any PH curve of degree
m can be obtained by choosing a degree n space curve and a polynomial
of degree k such that m = 2n 4+ k + 1. In particular, any cubic PH curve
which is not a straight line segment can be obtained as the integral of a
spherical curve of degree 2, i.e., by choosing the degrees n =1 and k£ = 0.
In this case, one may always simply set L = 1; the possible scalings of
¥(t) by constant factors can be obtained by a suitable choice of the ho-
mogeneous coordinates of p(¢). In fact, for positive constants L one has
§(VLP) = L 6(p). On the other hand, the sign of () can be changed
by permuting the components of p,

Yo Po Yo p1

~ ‘ D1 ~ % ‘ —Po
= 5 =9 = = Ll =0 . 3.5
y=|g =00 & v=|_s|=0( 0D (5

| b3 \ b2

The choice of polynomials p and L with the degrees n = 0 and £ = 2
leads to line segments which are represented as cubic Bézier curves. This
case will be excluded from the following considerations.

4 Interpolation of G!' Hermite data

We construct a PH cubic curve from given G' boundary data. For a curve
segment, the segment end points xo, x; € IR® and the unit tangent vectors
to, t1 € IR? at these points are given. We assume that the tangent vectors
are neither parallel nor anti-parallel, i.e., to X t; # 0. By switching to
suitable Cartesian coordinates we may achieve that the tangent vectors
have the form

to=(0sc) T andt; =(0—-s¢)’, (4.1)

where ¢ = cos ¢ and s = sin ¢, with an angle ¢, 0 < ¢ < 7, cf. (2.10). The
angle between the oriented tangent directions is 2¢.
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We want to interpolate the above G' boundary data with a cubic PH
curve. That is, the curve x(t) is to satisfy the interpolation conditions

x(0) = xg, x(1) = x1, %(0) = 7oto, x(1) = 1 t1, (4.2)

for arbitrary positive constants 7y, 71.

By combining Lemma 1 (n = 1, k¥ = 0) with the result (2.12) on
the rational Bernstein—Bézier representations of the circles connecting the
points to and t;, we get a representation of the cubic PH curves which
interpolate to the boundary tangents t, and t;. The control points of
these PH cubics are

—swA
by = X, b1=X0+%U2(1—0) s |, b2=xo+§v(1—c) VS ,
ve—w
—vSswA
and bs =x0 + 2 (1—c) s (—w? + v? — w?)?)
w* N e+vic+wie—wu
(4.3)
In fact, a short calculation confirms that b; — by = 2v*(1—c¢) to and

bs — by = 2w? (1—c) (1 + A?) t;. The system (4.3) of PH cubics depends
on the two weights v, w and on the parameter A. The weights control the
parameterization of the spherical curve y(¢) and the normalization of the
homogeneous coordinates. The parameter A\ selects one of the possible
spherical arcs connecting t, with t;.

In order to solve the solve the G' Hermite interpolation problem, one
has to choose the three parameters v,w, A such that the interpolation

condition
X(]_) = b3 = X1 (44)

is satisfied. Let d = (d;dads)T be the difference vector of the given
points, i.e., d = x; — xg. Combining (4.3) and (4.4) we obtain the three
nonlinear equations

—2(1-c)svwA=dy, 3(1-c)s(—w?+v>—w?)?) =ds,

and 2 (1—c)(W? XN c+v’c+w’c—wv) =ds (4.5)

for the three unknowns w,v and A. Of course, we are only interested in
real solutions.

4.1 Existence of solutions

The difference vector d = (dydsds )T will be called feasible for the G*
Hermite interpolation, if the equations (4.5) are fulfilled for certain real
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quadratic cone C'(Ag)

unit sphere

Ficure 2. The quadratic cone of the feasible difference vectors
for A = Ag.

values of w, v and .

Lemma 2. The feasible difference vectors d satisfy the quadratic equation

42+ 4202 -1 0 SA dy
( d1 d2 d3 ) 0 62)\2 0 d2 =0 (46)
SA 0 (c—1)(c+1)X?/) \d;
—o()

for . Thus, for any fixed parameter A € IR, the feasible difference vectors
d belong to a quadratic cone with its apex at the origin.

The proof of this fact results simply by substituting (4.5) into (4.6). The
matrix C(\) has been constructed by applying standard elimination tech-
niques to the system (4.5), see e.g. [6].

As an example, the quadratic cone of the feasible difference vectors for
a fixed parameter A = )\; is depicted by Figure 2. Only the upper half of
the cone (4.6) has been drawn; the other half is symmetric with respect
to the plane d3 = 0. The unit sphere is represented by some of its level
curves y3 = constant (thin black lines). The black dots are the given unit
tangents to and t;. The grey circle passing through the points t, and
t, is the circle y(t) = d(Pxgvw(t)) which is formed by the unit tangent
vectors of all PH cubics with A = )\y. All PH cubics with fixed A = )
are based on the same spherical circle, as the parameter \ selects one of
the possible circular arcs connecting to and t;, see Section 2. The weights
v and w, by contrast, control the various possible parameterizations and
normalizations of the homogeneous coordinates y(¢). The construction
of Lemma 1 (with L = 1) leads to the feasible difference vectors, which
form the quadratic cone C'()). The line ptg, 4 € IR (and similarly 1 t;)
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is a generator of this cone, because choosing the weights w = 0, v # 0
would produce PH cubics which degenerate into line segments with the
direction to. The spherical circle §(¢) touches the quadratic cone from the
outside.

For A = 0, the spherical circle y(t) is the great circular arc which passes
through t, and t;. In this situation, the quadratic cone (4.6) degenerates
into a double plane.

The components of C(\) are quadratic polynomials of the unknown
parameter A. Thus, the parameter A can be computed as a one of the real
roots (if they exist!) of (4.6).

Lemma 3. Consider the given difference vector d= (dy dy d3)". The
quadratic equation (4.6) for the parameter A has real roots if and only if
one of the conditions

421 -4A)d?+2(1 -4 d? +4c%s*d* >0 (4.7)
or d; = 0 is satisfied.

The proof of this fact is simply based on the discriminant of the quadratic
equation (4.6) for A. This discriminant factorizes into 4d;® times the
left—hand side of (4.7).

If the angle ¢ satisfies 1 —4¢? < 0,1i.e.,0< ¢ < %, then the difference
vectors which fulfill the inequality (4.7) form the interior of a quadratic
cone with the apex at the origin. The cone is depicted in Figure 3. This
cone is symmetric with respect to the y,ys—, y1y3—, and yys—plane. Its in-
terior contains the ys—axis, but neither the y; nor the yo,—axis. In addition,
the given tangent directions to, t; belong to its interior, as

421402+ (1 -4 2 +4c2 5% =8> > 0. (4.8)

The boundary of the quadratic cone (4.7) is the envelope of the system of
quadratic cones (4.6), A € IR. The Figure 3 shows one of these cones; it
touches the boundary of (4.7).

If the angle ¢ satisfies 1 —4¢? > 0, i.e., T < ¢ < 7, then the condition
(4.7) is fulfilled by all difference vectors d € IR®.

With the help of the quadratic equation (4.6), one can compute the
unknown parameter A from the given Hermite data. If the condition of
Lemma 3 is fulfilled, then we get at least one real solution to (4.6). Now,
in a second step, one has to assign suitable values to the weights v and w.
In the remainder of this chapter we will derive suitable assumptions which
guarantee the existence of real solutions for v and w.

For the sake of brevity we will consider only Hermite data with ¢ < %.
That is, the angle 2¢ between the given tangent directions is assumed to
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quadratic cone (4.7) atic cone C'(N)

unit sphere

FIGURE 3. The cone (4.7) of difference vectors leading to real
solutions of (4.6).

be smaller than 120°. This is the more interesting case for applications,
as a large angle between adjacent tangents is not realistic. For instance,
if one wishes to convert a given space curve into a PH cubic spline curve
with the help of G! Hermite interpolation, then it is always possible to
subdivide the original curve such that the above assumption gets true.

Owing to (4.5) the system d= Ei(/\, v, w) of feasible difference vectors
can be rewritten as

S dy SA
d(\v,w)= [ dy | = v*[3(1—¢) to] — 20w[z(1—c) | 0 |] (4.9)
ds 1 ’
w2 21-0)(14A) E)]
Resulting from this representation, one gets
d(\, €v,6w) = € d(\, v, w). (4.10)

Thus, the set of feasible difference vectors is a collection of rays emanating
from the origin O.

Lemma 4. Any pair of weights (v,w) € IR? can be represented as
(v,w) = (t§, (1 - 1)§) oras (v,w)=(t&,—(1—1)¢) (4.11)
with t € [0,1] and £ € R.

The proof results immediately by choosing & = +(|v| + |w]).
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Thus, the set of feasible difference vectors is the collection of rays
emanating from the origin O which are spanned by the two Bézier curves

SA

di(\ 1) = B3(t) 2(1—c) to + B3(t) $(1—0) | ©
1

+ B3(t) 2(1-o)(1+X) &,  te€0,1].

(4.12)

These curves result by substituting (4.11) with £ = 1 into (4.9). The third
components of these curves are strictly positive for ¢ € [0, 1],

Bi(t)2(1—c)e£Bi(t)s(1—c)+B2(t) (1 —c) (1+A)c
>2(1—-c)[(1—t)2c—t(1—t)+tc]
>2(1 o) [(1—t)2c—2t(1—t)ette] (4.13)
=2(1-ccl[(l-1t)—1t],

as ¢ < I (hence ¢ > 1) is assumed.

Case 1: A # 0. As shown in Lemma 2, the given difference vector
(dy dy d3) " belongs to the quadratic cone (4.6). The y;y»—plane separates
the upper and the lower half of this cone, as ¢ <  was assumed. This
can be seen from the fact, that the plane d3 = y3 = 0 intersects the the
cone (4.6) only at the origin, because both coefficients Ci 1(A) and C ()
are guaranteed to be positive.

On the other hand it can be seen from the (4.12), that the feasible
difference vectors span the whole upper half of the quadratic cone (4.6).
The middle control points of the two Bézier curves lie on either side of the
plane y; = 0 which contains the remaining two control points.

Thus, if A # 0, then real solutions for the weights v, w exist, provided
that the given difference vector d = (d; dy d3)' satisfies d3 > 0. In
addition, it fulfills the condition of Lemma 3, as a real solution \ exists.
We can even conclude that the first condition (4.7) of Lemma 3 has to be
satisfied, because the only intersections of the cone (4.6) with the plane
di = 0 are the lines spanned by t, and t;. As observed earlier, the points
of both lines satisfy (4.7).

Case 2: )\ = 0. The given difference vector (d; dy d3)' is contained
in the plane d; = 0, because the cone (4.6) degenerates into this plane.
Thus, the given Hermite data are planar; the tangent directions to, t; and
the difference vector d are coplanar.

We consider the two Bézier curves a*i (0,%) in the plane d; = 0, which
span the set of feasible difference vectors. See Figure 4 for an illustration.
The extreme rays (dashed lines) of the feasible region are tangents of
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ds 021 g

extreme ray -

-0.4 0.4

dy
-0.14

-0.2+

F1GURE 4. Feasible difference vectors for A = 0.

the curve d_ (0,t); their directions can be found by solving the quadratic

equation det(d_(0,t),d/dt &i(O, t)) = 0. This leads to the directions

(0 £2(c—=1)s/2c=1)2c+1) —(c—1)(2c=1)(2c+1))T  (4.14)

of the extreme rays. On the other hand, the lines which are spanned
by these directions turn out to be the boundaries of the intersection of
the quadratic cone (4.7) with the plane d; = 0, as the left-hand side of
(4.7) vanishes for (4.14). Thus, for A # 0 we get solutions to the Hermite
interpolation problem provided that the given difference vector satisfies
the inequalities (4.7) and d3 > 0. In addition, it satisfies d; =0, as A =0
holds. Hence, we have exactly the same conditions as in the previous
case. This could have been concluded immediately from the fact, that
the feasible difference vectors d(), v, w) (see (4.9)) depend continuously
on the parameters A\, v and w. However, the separate discussion of the
planar case may be of some interest for dealing with planar PH curves.

Summarizing these observations we have the following result:

Theorem 5. The G' Hermite interpolation problem with 0 < ¢ < 3

has regular real solutions if and only of the difference vector d satisfies
the inequalities (4.7) and ds > 0. Thus, the difference vector has to be
contained in the upper half of the quadratic cone (4.7), see also Figure 3.

Proof. The regularity of the solutions remains to be shown. The given
curve is regular if and only if the weights satisfy v,w # 0; under these
assumptions we have ¥(t) # 0, hence x # 0, cf. (2.12) and Lemma 1.
Consider the case v = 0. Resulting from (4.5), the given difference
vector d is linearly dependent on t;. Hence, by choosing A = 0 one
can find another solution (v,w) with v,w # 0. This solution is found
by intersecting the curve d_ (0,t) (see (4.12) and Figure 4) with the line



14 Rational Frames for PH splines

spanned by t; this leads to a point &i(O,to). According to (4.10), a
regular solution of the Hermite interpolation can the be found by choosing
(v,w) = (Etg, —E(1 — ty) ), where & is found from d = &2 a*_(O,tO) This
is possible as d3 > 0 holds. Thus, if the system (4.5) has a solution with
v = 0 (or, similarly, with w = 0), then there exists another regular solution
with A = 0. ]

4.2 Computing the solutions

If the tangent vectors are not given in the standard form (4.1), then one
has to convert the given Hermite data into a new coordinate system, whose
p1— (resp. p3—) axis is perpendicular to (resp. the bisector of) both tangent
directions.

Let &given = (XY Z)T be the difference vector of the given segment
end points xo and x;. If the assumptions of Theorem 5 are satisfied, then
we are able to compute a PH cubic which matches the given end points
and tangent directions. In order to find the parameter A and the weights
v, w, one needs to discuss two cases.

Case 1. The data are not coplanar, i.e. X # 0. The parameter A\ can be
found from the quadratic equation (4.6). This yields the two solutions

Zs+c16s2X24+4s2Y24+4 527212 X2-3Y?

i /o = X. 4.15
12 12X2452Y 2452724 X2—Y? (4.15)
Now consider the three quadratic equations
. X . v X 0
dOw,v,w)x [ Y | =w*dX, — 1) x | Y | =10 (4.16)
Z v Z 0

for the weight ratio v/w. Forming linear combinations of them one may
find a linear equation for this ratio. This leads to v/w = Ay /By with

A, =2c(1+ X)X and By=YcA+X—-Zs\ k=12 (417)

Now we compute the weights v = v, = & A and w = wy = & By from

d( M, & Ak, & By) = (&)? d(M\e, A, By) = (X Y Z)7. (4.18)
This gives
(&) & (4.19)

T Ashe(l+ N (c—D)(Ye e+ X — Zshy)

The sign of & can be chosen arbitrarily. The control points of the resulting
PH cubic do not depend on the choice of the sign, see (4.3).
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Case 2. The data are coplanar, X = 0. In this case we choose A = 0.
Consider the third component of the cross product

0 0 0
0| =dOwv,w)x |V | =wrdOyw, 2, )x [V ]. (420
0 Z v Z

It leads to a quadratic equation with solutions v/w = A/ B,

Aipp=Y £VA2Z2 —3Y2+452Y2, Byjp=2Yc—Zs). (4.21)

This computation fails iff &given depends linearly on ty; then one has to
use the ratio w/v instead.

Similar to the previous case we compute the weights v = v, = & Ay
and w = wy = & By from

d(0, & Ap, & Bi) = (&)% d(0, Ay, By) = (0Y Z) 7. (4.22)

This gives

3
4s(1—c)(4Zcs—3Y+452Y +/4s272-3Y2+452Y?)’

(&)* = (4.23)

k =1,2. Again, the sign of & is arbitrary.

In both cases we get two solutions (Mg, vg, wg), k = 1,2. We choose the
one where the length of the circular arc (2.12) (which is formed by the unit
tangent vectors of the PH cubics) is smaller. This is the solution where
vw < 1. The weight weight 2(¢ — 1)v w of the middle control points ¢ is
then positive.

Note that the solutions depend continuously on the data, because the
function a()\, v,w) is a continuous function of the parameters and weights
A, v and w. Thus, if the data converge from the spatial to the planar
situation, then the solutions to spatial data will converge to solutions to
the planar data. However, if the data are close to the planar situation,
then one has to take extra care in order to avoid numerical problems.

As an alternative approach to the computation, one may use the
control-point based technique which has been developed by Wagner and
Ravani [16]. This approach, however, does not yield any information
about the pre-image of the interpolating PH cubic for the generalized
stereographic projection. For the approximate computation of rotation
minimizing frames as outlined below, it is essential to use this additional
information which is only provided by the first scheme. In addition, the
existence of real solutions can better be discussed with our approach.
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5 Converting space curves into PH splines

Consider a given space curve segment p = p(t) with the parameter ¢
varying in the interval [0, S]. One may assume that the parameter ¢ is
the arc length of the curve, i.e. ||t(¢)]| = [|p(t)]| = 1 holds, see [12]. With
the help of the G' Hermite interpolation procedure, we want to convert
the given curve into a sequence of PH cubics. Firstly, for a given step-
size A = S/N, we generate a sequence of points p(i A) with associated
unit tangent vector t(i A), i = 0,..., N. Secondly, we apply the above
described Hermite interpolation procedure to each pair of adjacent G
Hermite data p(i A),t(i A) and p( (i+1) A),t( (i+1) A). If the assump-
tions of Theorem 5 are satisfied for each segment, then this leads to a PH
cubic spline curve. In the sequel we discuss the following question.

Is it always possible to convert the given curve p(t) into a cubic PH spline
with any desired accuracy via G' Hermite interpolation?

In order to answer this question, one has to discuss the asymptotic be-
haviour of the solutions to the Hermite interpolation problem for A — 0.
We consider the given curve in a neighbourhood of a point p(). Under
suitable assumptions about its differentiability, the curve can be repre-
sented by its canonical Taylor expansion

(t—to) — 5 kg (t—t0)® + O((t—t0)")
p(t) = | 3 ko (t t0)? + ¢ k1 (t—t0)® + O((t—t0)*) (5.1)
¢ Koo (t— to) O((t—t0)*)

which results from the well-known Frenet formulas, see [12]. Here, the
origin of the coordinate system is at p(to), the p;—axis is spanned by t(t),
and the p;po—plane is the osculating plane of the curve at p(¢y). The
coefficients k;, 7; are the derivatives of curvature and torsion at ¢ = t,

Ki = d—i/f(t) and T1; = d—] (1) (5.2)
i = T = T : :

t=to t=to

The curve points p(tg), p(to+A) with the associated unit tangent vectors
t(to), t(to + A) are to be interpolated with a PH cubic.

Firstly, in order to apply the formulas from the previous section, we
have to transform the data into the local coordinate system. Its x;—axis
(resp. x3-axis) has the direction t(to) X t(to + A) (resp. t(to) +t(to + A)).
With the help of computer algebra tools one gets Taylor expansions for
c = cos¢, s = sin¢, and for the components X, Y, Z of the difference
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vector &given = p(to + A) — p(to) of the segment end points:
c=1— g rE A% — L kor1 A%+ O(AY),

5:%K,()A—FililAZ—{—%(lﬁg—iﬁng—iﬁg)Ag—i‘O(Aél),

X = % Ko To A3 + O(A4), (53)
Y =2k A*+O(A*) and
Z=A— 5 kg3 + O(AY).

Now we can check whether the conditions of Theorem 5 become true if
the stepsize A converges to zero.

Obviously, the second condition Z = d3 > 0 gets true for sufficiently
small A. On the other hand, the left—hand side of the inequality (4.7) has
the Taylor expansion

ke A* + kg k1 A5 + O(A). (5.4)

Thus, solutions for sufficiently small stepsize A are guaranteed to exist,
provided that the curve has non—zero curvature at p(ty), i.e. Ko # 0.

We give a brief geometric interpretation of this fact. Consider the angle
between the difference vector &given and the ps—axis of the local coordinate
system. It has the Taylor expansion

=1/ko ¢ + 121 k1 A% + O(AY), (5.5)

hence it converges quadratically to zero. On the other hand, consider
the quadratic cone (4.7) of the feasible difference vectors. This cone is
centrally symmetric with respect to the ps—axis of the local coordinate
system. It intersects the p;ps— and pops—plane in a pair of lines. The
angles between these lines and the z—axis have the expansions

$V6ko A +O(A?) and $V6koA +O(A?), (5.6)

they converge linearly to zero for A — 0. Thus, if kg # 0, then solutions
to the Hermite interpolation problem exist, provided that the stepsizes A
are sufficiently small.

Next we consider briefly the asymptotic behaviour of the solutions for
decreasing stepsize A — (0. The two possible values of the parameter A
have the Taylor expansions

M =370A—37A?+O(A?) and Ny = —; 0 A— 51 A+O(A®) (5.7)
Owing to (4.3), the interpolating PH cubic has the control points

bO = p(to)a bl = p(tO) + ll 1_-"(750)7

’ (5.8)
b2 :p(t0+A) —lgt(to—{—A), and b3 :p(t0+A),
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with the lengths I; = 20%(1 — ¢) and I, = 2w?(1 — ¢)(1 4+ A?). If we use
the first solution A = A;, then both lengths are asymptotically equal to

1
ll,l == 1271 - gA + O(A2) (59)

For this solution, the length of the spherical curve (2.12) which is formed
by the unit tangent vectors of the interpolating PH cubic tends to zero.
For decreasing stepsize A — 0, the first solution converges to the solution
of C! Hermite interpolation with standard cubic Bézier curves, where the
given curve p(t) is parameterized with respect to its arc length.

For the second solution A = Ay, by contrast, we get lio = lyo =
A + O(A?). In this case, the length of the spherical curve (2.12) which is
formed by the unit tangent vectors converges to 2. The first solution is
to be preferred, as the shape of the resulting spline curves is much better.

The asymptotic behaviour of both solutions is depicted in Figure 5.
The original curve segment has been drawn in grey. The solid (resp.
dashed) curve show the cubic Bézier curve which is obtained from the
first (resp. second) solution of the G' Hermite interpolation problem.

FIGURE 5. Asymptotic behaviour of the two solutions (scheme)

For each point p(to) of the given curve we can find a maximum stepsize
Anax(tp), such that the solution to the Hermite interpolation problem
with the point and tangent data p(t), p(to + A) and t(ty), t(to + A)
exists for any stepsize A € [0, Apnax(to)]. We assume that the curvature
k(to) is strictly positive for all ¢, € [0,s]. (For space curves, the sign
of the curvature has no meaning, see [12]). Under this assumption, the
maximum stepsize will be positive, Ayax(t9) > 0. Moreover, there exists
a global lower bound A, for the maximum stepsize,

Amax(tO) > AO >0, (510)

as we are dealing with a curve segment of finite length S. Summing up,
we have the following result:

Consider a given curve segment p(t), t € [0,S] of finite length which is
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sufficiently often differentiable or which is a collection of segments which
are sufficiently often differentiable. (The latter assumption is satisfied by
the curve representations of CAD systems.) The curvature of the curve is
assumed to be strictly positive. With the help of G' Hermite interpolation
with PH cubics as described in the previous section, this curve can be
approximately converted into a PH cubic spline curve. By increasing the
number of segments, the approximation can be made as highly accurate
as desired.

For practical implementations, one should use an adaptive choice of the
stepsize, in order to keep the number of segments as small as possible.
In the neighbourhood of points with x = 0, one will have to use smaller
stepsizes in order to get close to such points. For true space curves, such
points are very unlikely to occur. This, however, is different in the planar
case, where inflections may happen quite frequently.

6 Rational frames of PH curves

Consider a segment of a space curve x(¢) and a matrix—valued function
U = U(t), both with the parameter ¢ € [0, 1]. The matrix U(¢) is assumed
to be a special orthogonal matrix for all ¢, i.e., it satisfies UU T = I and
det U = +1. The mapping

R?® % [0,1] = R® (q,t) —~d () =x(t)+U(t)q (6.1)

describes a spatial Euclidean motion. The parameter ¢ can be identified
with the time. The coordinate vectors q and q' describe the points of
the moving and of the fized system, respectively. Owing to the properties
of the matrix U, the motion preserves (for each t) the distances between
points. The origin O of the moving system travels along the curve x().

The motion (6.1) will be called a frame of the given curve x(¢), if the
vectors

Ui) |0 and  x(¢) (6.2)
1

are linearly dependent for all ¢ € [0,1]. Under this assumption, the p;ps—
plane of the moving system is always mapped onto the normal plane of
the given curve x(t). For instance, the well-known Frenet frame of a space
curve is obtained by choosing the orthogonal matrix U = [i(¢) b(t) £(¢)].
Here, the vectors 1, b and t are the normal, the binormal, and the tangent

vector of the curve, see [12].
Frames of space curves are used for sweep surface modeling in geomet-
ric design. Consider a planar curve segment ¢ = c(u), v € [0,1], in the
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p1pe—plane of the moving system, i.e. c3(u) = 0. Then, the surface
x(t)+U(t)e(u),  (u,t) €[0,1] (6.3)

is a so—called sweeping surface; all parameter lines ¢ = const. are congru-
ent. The generating curve c(u) is the profile curve of the surface. The
trajectory x(t) is sometimes referred to as the spine curve. If the surface
is generated by a frame rather than a general motion, then the parameter
lines ¢ = const. lie in the normal planes of the curve x(t). See [11,15, 18]
for more information on frames and sweep surface modeling.

The motion (6.1) is said to be a rational motion, if both the components
of x(t) and the components of the matrix U(¢) are rational functions of
the parameter ¢t. Under this assumption, the trajectories of the points of
the moving system are rational curves. Also, if c(¢) is a rational curve,
then so is the sweeping surface (6.3). Rational motions which satisfy (6.2)
are called rational frames. For more information about rational motions
the reader is referred to [10].

The following fact has firstly been observed by Farouki and Sakkalis [5].

Lemma 6. Any PH curve has a rational frame.

With the help of the generalized stereographic projection, we give another
proof of this observation. In addition, the proofleads to an explicit formula
for the rational frames of PH curves, see (6.5).

Proof. As observed earlier in Section 3, any PH curve can be obtained
from the construction which is described by Lemma 1. Let p(t) be the
homogeneous coordinates of the preimage curve. The matrix

1 —D3+P2—Ps+P3 —2 Do P3—2P1 P2 —2 Po P3+2 Po P
Uo=75 | —2PoDs+2p1 P2 Po+Pi—P;—P; 2P0 Pat2p1Ps
2Py P3—2PoP1 2PoPa—2P1Ps —PitDi+pa—Ds

with D = p2+p+pa+p

(6.4)

is a special orthogonal matrix, and it satisfies the condition (6.2). In
fact, the point U(¢) (0 0 1) on the unit sphere is exactly the image of
p(t) under the generalized stereographic projection d, cf. (2.4). Thus, the
motion (6.1) with U(t) = Up(t) is a frame of the PH curve x(?). ]

This proof is based on the classical representation of a rotation matrix with
the help of its so—called Fuler parameters, see [2]. The Euler parameters
of a rotation matrix are related to the unit quaternion which describes the
rotation U. There exist a close relationship between the Euler parameters
and the generalized stereographic projection, see [8,17].
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The definition of the frame of a space curve leaves one degree of free-
dom, as it is possible to rotate the frame around the tangent. For instance,
any spatial motion

(a,2) = q'(t) = x(t) + Us(t) Zo(t) q (6.5)

with Uy(t) as defined in (6.4) and

1 52_7’]2 —2577 0

Zt)= 5 | 261 €-n* 0 (6.6)
& +n 0 0 4

for arbitrary polynomials £(¢), n(t) (which should not have any joint roots)

is a rational frame of the PH curve x(¢), see Lemma 1.

For the construction of sweeping surfaces using frames it is advanta-
geous to use the frame which rotates as little as possible. This frame is
called the rotation minimizing frame of the given curve, see [11,15,18].
For this frame, the angular velocity is as small as possible. It leads to
good shapes of the generated sweeping surfaces.

The forthcoming conference article [9] gives a kinematical discussion
of rotation minimizing frames. For curves whose unit tangents form a cir-
cular arc, the associated rotation minimizing frame is computed exactly.
For instance, this is automatically true for PH space cubics. In addition,
based on quaternion calculus, the article derives a scheme for construct-
ing rational approximations of rotation minimizing frames. Due to space
limitations we cannot present more details. The interested reader should
consult [9]. Recently, Maurer [13] has independently discussed rational
approximations to the RMF.

An example is depicted in Figure 6. The left figure shows a cubic
PH spline curve with three segments (black curve). This curve has been
obtained by converting the thick grey curve into a PH spline curve, as
described in the previous section. The dashed lines are the tangents at
the segment end points of the PH spline. There is virtually no difference
between the original curve and the approximating PH cubic spline curve.

A sweeping surface which has been generated by a rational approxima-
tion of the rotation minimizing frame is shown on the right—hand side. The
cubic PH spline curve serves as the spine curve of the sweeping surface.

7 Concluding remarks

In this paper we have presented a general approach to the construction of
Pythagorean hodograph space curves. In the case of PH cubics, we were
able to discuss the existence of real solutions to Hermite interpolation of
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FIGURE 6. Rational PH spline curve (a) and a sweeping surface (b)
which is generated by a rational approximation of the rotation
minimizing frame

G! boundary data. The results can be used for converting given space
curve into cubic PH splines. As a matter of future research, we will try to
give a similar discussion for Hermite interpolation of G? boundary data
with PH quintics.

The second part of the paper was devoted to rational frames of PH
curves. Using the close connection between rational hodographs (which
are rational spherical curves) and Euler parameters of orthogonal matrices,
a general representation of the rational frames has been presented. By
combining this representation with the above conversion procedure, it is
possible to construct rational approximations to the so—called rotation
minimizing frame of a space curve.
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