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Abstract. Non–planar driving mirrors have a complex
geometry, which is defined by a base surface (the so–
called calotte) and a planar contour. We describe and
compare methods for generating NC tool–paths for a
calotte cutting machine from these data. The methods
are based on piecewise circular arcs and on polynomial
spline curves. Distance bounds for the resulting tool
paths, which are needed in order to check the accuracy,
are also discussed. The paper concludes with sugges-
tions for research on the use of Pythagorean hodograph
curves in industrial NC tool path generation.

Keywords. NC tool paths, spline curves, distance
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Introduction

Free-form Geometry in CAD systems is almost always
defined by spline curves and surfaces (NURBS). Tool
paths for numerically controlled machining, by con-
trast, are mostly described by polygons or piecewise
circles (G-code). Consequently, at the manufacturing
stage, the sophisticated descriptions of free–form ge-
ometry for CAD have to be broken down in piecewise
linear and circular representations. Typically, this con-
version leads to a huge inflation of the data volume.
In addition, it destroys the analytical continuity of the
trajectories, as the piecewise linear/circular representa-
tions are merely tangent continuous or continuous.

We report on our experiences with spline curves for
the numerically controlled cutting of non–planar driv-
ing mirrors. These mirrors, which are frequently used
in cars, help the driver to detect other cars or obsta-
cles in the so–called “dead angle”. First instances of
these mirrors were manufactured by piecing together
two segments. Currently, these mirrors are manufac-
tured as a single segment, consisting of a spherical and
a non–spherical zone, which are joined with high–order
analytical continuity.

The manufacturing of the mirrors is done by glass

cutting of non–planar calottes, a process which requires
highly specialized machines, such as – in our case – the
SPHERIC 3D system of the HEGLA group (see Fig-
ure 1), with the CNC system ProCom CNC 300. The
boundary curve of the mirror is traced with a cutting
wheel. Afterwards, the glass surface is broken along
this curve, giving the desired piece of the mirror.

Figure 1: The SPHERIC 3D calotte cutting system
(picture courtesy of HEGLA Group).

Until recently, special machines for each mirror
type have been used, and three–axes were therefore suf-
ficient. Due to the shortening of cycle times in industry,
NC machines with 6 axes are increasingly being used.
These machines are capable of manufacturing mirrors
with different geometries. Also, due to the fact that the
cutting wheel is now always kept perpendicular to the
base surface, one obtains a better quality of the cut.

In this special application of NC machining, high
accuracy (0.1mm) and high order of analytical conti-
nuity of the tool path is very important. It leads to a
reduction of forces which are present in the machin-
ery. This extends the lifetime and reduces the number
of maintenance intervals of the calotte cutting system.
Moreover, due to the better quality of the trajectory of
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the cutting wheel, it is much easier and more reliable
to break the the glass surface along the desired mirror
boundary curve. Consequently, less (manual) postpro-
cessing (smoothing) of the rim of the mirror is needed.

Many related references on NC machining can be
found in [5]. During the last years, much progress
has been made to use high–level geometric primi-
tives, such as spline curves, directly for NC machin-
ing. For instance, this can be achieved with the help of
Pythagorean–hodograph curves, see [4]. Hermite inter-
polation with rational cubic splines has been used for
robot control in an industrial environment [7].

The paper is organized as follows. First we de-
scribe the specification of the geometry, by combining
a planar contour with a base surface. We then describe
applications of the implicit representation of curves and
surfaces, for checking the distance and for generating
curves on surfaces. Then we report on several methods
for generating the tool path. This includes the defini-
tion of an associated frame. We conclude this paper by
indicating directions for potential future research.

Specifying the Geometry

We describe the definition of the shape of the mirror,
which is obtained by projecting a planar contour onto
a non–planar base surface. Distance bounds are also
discussed.

Calottes

The mirrors are cut out of base surfaces, the so–called
calottes. The calottes are mirrors in the shape of sur-
faces of revolution. Their profile curve z = z(r) is
shown in Figure 2 (not to scale). The calotte surface is
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Figure 2: Profile curve of the calotte (not to scale).

generate by a rotation around the z–axis.

The main part of the calotte (0 < r < A), called
the “spherical” zone, is generated by a circle segment
with radius R and center (−r0, R),

zs(r) = R −
√

R2 − (r + r0)2. (1)

The offset r0 of this circular segment is introduced due
to technical reasons; it facilitates the adjustment of the
calotte surface in the machinery.

The outer part (r > A), called the aspherical zone,
is generated by the profile curve

za(r) = R −
√

R2 − (r + r0)2 + K (r − A)3. (2)

The profile curve is the graph of the piecewise function

z(r) =

{

zs(r) if r ≤ A
za(r) otherwise

(3)

The spherical and aspherical zones are joined with con-
tinuous second derivatives at r = A. Consequently,
the driver will not observe any “cracks” in the images
in his mirror1. After applying the rotation around the
z axis, the inner part of the profile curve generates a
segment of a spindle torus. If r0 = 0, then the torus
degenerates into a sphere. Typical values of the param-
eters are r0 = 7, R = 2000, A = 190 (all in mm), and
K = 2.2 · 10−5 mm−2.

Planar contour

The boundary curve of the mirror is defined in the xy–
plane and then projected onto the calotte surface. A
typical boundary contour is shown in Figure 3. The
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Figure 3: Mirror boundary curve

boundary curve of the mirror is given in digitized form,
as a planar polygon (sequence of points).

The horizontal extension of the mirror is equal to
approx. 200mm, i.e., about one tenth of the radius of
the circular part of the profile curve. The calotte surface
is used only in a neighbourhood of the axis of rotation,

1Note that even jumps of the second derivatives would be visi-
ble, causing cracks in the reflected images of lines.
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where it is close to being planar. After projecting the
boundary curve onto the calotte, the maximum vertical
deviation from the xy–plane is approximately 10mm.

Each calotte is used to produce several driving mir-
rors; they are placed with rotational symmetry around
the z–axis. Thus, the mirror boundaries, which are de-
fined in a local coordinate system, have to be moved to
the suitable location in the xy–plane.

Implicit representation

In Computer Aided Geometric Design, curves and sur-
faces can be described either in parametric or in im-
plicit form. In many applications, the availability of
both representations results in simpler computations.
For instance, the problem of computing the intersec-
tion(s) of two planar curves can then be reduced to a
one–dimensional root finding problem.

We derive the implicit equations of the calotte sur-
face and discuss two potential applications.

Implicit form of the calotte equation

The “spherical” segment of the calotte is part of a spin-
dle torus with the equation

(r + r0)
2 + (z − R)2 = R2 (4)

where r2 = x2 + y2. The implicit equation is obtained
as the resultant of both polynomials with respect to r,
leading to a polynomial of degree 4 in x, y, z,

F (s)(x, y, z) = (x2 + y2)2 + z4 + 2(x2 + y2)z2

−4R(x2 + y2)z − 2r2
0(x

2 + y2) − 4Rz3

+2r2
0z

2 + 4R2z2 − 4r2
0Rz + r4

0 = 0
(5)

The aspherical segment of the calotte is generated by
the contour curve with the equation

G(a)(r, z) = R2−(r+r0)
2−(R−z+K(r−A)3)2 = 0.

(6)
see (2). The implicit equation of the aspherical zone
is again obtained as the resultant of G(a) and of
H(x, y, r) = x2 +y2 − r2 with respect to r. This leads
to a polynomial F (a)(x, y, z) of degree 12 in x, y, z,
consisting of 66 terms, if expressed in products of pow-
ers of (x2 + y2) and z. (For the sake of brevity, the
formula for F (a) is omitted; it can be generated with
standard computer algebra tools.)

Distance estimates

The implicit form can be used to bound the distance of
a point from the surface, as follows.

Lemma. Let a surface in implicit form be given,
F (x, y, z) = 0, with the domain (x, y, z) ∈ Ω ⊂ R

3.
Consider a point p0 = (x0, y0, z0) ∈ Ω. We assume
that the curve of steepest descent (that is, the integral
curve of the vector field ∇F , see Figure 4) which starts
at p0 reaches the surface at a point q, and the curve
segment from p0 to q is contained in the domain Ω. Un-
der these assumptions, the distance d from the surface
satisfies

d ≤ F (x0, y0, z0)/C, (7)

where C = min(x,y,z)∈Ω |∇F |.

p

F(x,y,z)=0

F(x,y,z)=constant)

Ω
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path of

0

q

footpoint of p

Figure 4: Distance of a point from a surface.

This result (without noting the technical assumption
about the curve of steepest descent) is due to Seder-
berg [10]. The proof results by applying the mean
value theorem to the restriction of F onto the curve of
steepest descent (shown as dotted curve in the Figure).
Clearly, the length of this curve is an upper bound of
the orthogonal footpoint distance (dashed line).

If the given surface is algebraic (that is, F (x, y, z)
is simply a polynomial), then this Lemma can be
used to bound the distance of a spline curve p(t) =
[x(t), y(t), z(t)] from the surface, as follows. The com-
position F ◦p is again a piecewise polynomial function,

F (x(t), y(t), z(z)) =
∑

i

di Bi(t) (8)

with B-Splines, or even simply Bernstein polynomials,
Bi(t) and coefficients di, Hence, due to the convex hull
property, the value of F ◦ p is bounded by maxi |di|.
Consequently, the distance of the curve from the sur-
face is bounded by

max
i

|di|/C. (9)

The constant C , which is a lower bound of the length of
the gradient, can be found with the help of the convex
hull property of polynomials, applied to the gradients.
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Note that in the case of calottes – where all surfaces are
surfaces of revolution – it suffices to analyze the gradi-
ents in the plane y = 0, due to the rotational symmetry
of the gradient field ∇F ! This is demonstrated by Fig-
ure 5, which shows the profile curve of the aspherical
part and the gradient field ∇F (a)(x, 0, z) (left).
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Figure 5: Gradient field of the aspherical part.

Here, the gradient field is a two–dimensional
tensor–product Bézier patch of degree (11,3). A suit-
able constant C is found as the minimum distance of
the convex hull of the gradients from the origin (right
Figure).

Similar techniques can be applied to the spherical
part, but one has to restrict oneself to a narrow strip
around the calotte surface. This is due to the fact that
the inner branch of the spindle torus surface is rela-
tively close to the calotte surface.

Construction of curves on surfaces

The implicit form of a surface is also useful for gener-
ating curves p(t) = [x(t), y(t), z(t)] which lie (exact
or approximately) on a given surface F (x, y, z) = 0.
Exact solutions to this problem are available for spe-
cial classes of surfaces, such as quadrics, tori, and cy-
clides. For more general implicit surfaces, approximate
solutions can be found by minimizing – in addition to
satisfying conditions such as interpolation or approxi-
mation of given data – an objective function of the form

G =

∫ b

a

[F (x(t), y(t), z(t))]2 dt. (10)

Another objective function, which also takes the gradi-
ent information into account, is

H =

∫ b

a

[F (x(t), y(t), z(t))]2

|∇F (x(t), y(t), z(t))|2
dt. (11)

We demonstrate the different behaviour of both ob-
jective functions by an example. We construct a

Bézier curve of degree 4 on an elliptic cylinder (di-
ameters 1 and 3, with vertical axis) which interpo-
lates 3 given points. The remaining degrees of free-
dom are used to minimize the objective functions G
and H. Both objective functions are regularized by
adding ω

∫ 1
0 |p′(t)|2dt, with a small positive weight ω.

The solution to the resulting optimization problem is
found via Newton iterations, where the interpolating
quadratic Bézier curve serves as the initial value.

The results are shown in Figure 6. The distance
from the cylinder surface is visualized by the vertical
vector fields along the curves (amplified by factor 10).
The second objective leads to more uniform distribu-
tion of the distance error, and to a smaller global devi-
ation from the cylinder surface.
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Figure 6: Curves through three points on an elliptic
cylinder, computed with (left) and without
(right) gradient information.

In many examples, where the norms of the gradi-
ents do not vary too much (such as in the case of the
aspherical part of the calotte surface), the first objective
function gives (almost) as good results as the second
one. Also, this objective function is computationally
easier to deal with, as its derivatives can be evaluated
in closed form. In contrast to this, the evaluation of the
derivatives of H needs (far more expensive) numerical
quadratures.

Tool path generation

We discuss three different methods for tool path gener-
ation and interpolation. After generating an analytical
description of the tool path, we define an associated
frame which is needed to specify the orientation of the
tool. Finally, the tool path is traced according to the
desired speed distribution.

Arc Splines

This method is based on an arc spline representation
of the boundary. We interpolate the given points with
a biarc spline, where the tangents are estimated from
the data. See [12] for further information on biarcs.
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The circular spline curve is projected onto the calotte
surface, leading to a C1 continuous space curve.

Planar Splines

The second method uses planar spline curves. First,
we parameterize the points using one of the standard
methods for parameter estimation, such as centripetal
parameterization, cf. [11, Chapter 9.2]. Next, we use
the algorithm A9.1 of [11] to generate a polynomial
(at least) C2 B-spline curve. Finally, this curve is pro-
jected onto the calotte surface. This results in a curve
of the form

p(t) = [x(t), y(t), z(
√

x(t)2 + y(t)2)] (12)

where x(t) and y(t) are spline functions.

Spatial Splines

Finally, the third method used spatial spline curves for
describing the boundary curve. The algorithm is al-
most the same as for method 2, but the steps of pro-
jection and interpolation are now swapped. The given
points are projected onto the calotte surface. Again, we
use one of the standard methods for parameterization to
find an associated sequence of parameter values. The
spatial spline curve is again generated with the help of
algorithm A9.1 from [11].

Note that, however, the spatial curve is not exactly
contained in the calotte surface. In order to guaran-
tee the desired accuracy, we need to check the distance
from the base surface. Exact error bounds are avail-
able from (9). If needed, that accuracy of the curve can
be improved with the help of an optimization procedure
based on the objective functions G or H. The additional
degrees of freedom can be generated by inserting addi-
tional knots, or by degree raising.

Associated Frame

At each point p(t) = (x, y, z) of the mirror bound-
ary we define an associated frame, which specifies the
orientation of the cutting wheel of the calotte cutting
system. The frame consists of the tangent vector of the
tool path,

~t(t) = ṗ(t)/|ṗ(t)|, (13)

the normal vector of the calotte surface, which can be
obtained from the implicit equation,

~n(t) = ∇F (x, y, z)/|∇F (x, y, z)| (14)

and of their cross–product ~b(t) = ~t(t) × ~n(t). These
three vectors are then used to compute the three angles
of the rotational drives of the calotte cutting system.
Due to the choice of the second vector, the cutting tool
is always kept orthogonal to the calotte surface.

Tracing the tool path

During the cutting process, the control unit of the
calotte cutting system generates – at intervals of 1 mil-
lisecond – positions (point and frame data) along the
tool path. These positions are used to control the six
axes of the calotte cutting machine. The distribution
of the positions is governed by the physical limitations
of the machine. We use a generalization of the bang–
bang principle, as described by Farouki et al. [6]. In our
implementation, we take the maximum velocity, accel-
eration and jerk along the tool path and at the six axes
of the machine into account, and use sin2 acceleration
characteristics. Note that the arc length of the tool path,
which is needed for controlling the tool speed, cannot
be computed exactly for spline curves; in this case, our
implementation uses numerical quadratures to approx-
imate it.

Experimental results

We compare the tool path descriptions by arc splines
and by planar polynomial spline curves, using a part of
the mirror boundary (shown in grey in Figure 7). We
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Figure 7: The segment of the mirror boundary.

tested the path descriptions by arc splines and polyno-
mial spline curves, and recorded the machine data at in-
tervals of 4 milliseconds2 . The experimental results are
visualized in Figure 8, showing the distribution of the
accelerations along the path (grey curves). These ac-
celerations were computed as second order difference
quotients from the actual position data. In order to re-
duce the inherent noise, we have also plotted the av-
erage acceleration of 11 neighbouring positions (black
curve).

The piecewise circular description of the tool tra-
jectory leads to a discontinuous distribution of the ac-
celeration, which implies relatively large forces at the
machinery. The polynomial spline curve produces a
relatively smooth distribution with only small jumps.

On the other hand, in the regions where the bound-
ary curve has a relatively low curvature (which corre-

2Due to technical reasons, only every fourth timestep was
recorded.
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Figure 8: Accelerations (grey curve) and average
of 11 adjacent accelerations (black).

sponds to the small accelerations in the right part of the
figure), the acceleration produced by the spline curve
oscillate much more than the accelerations produced by
the arc spline curve. This is due to the approximate arc
length computation via numerical quadratures, which
has to be used in the spline case.

Note that – for both methods – the tracing of the
tool path is based on the arc length of the planar curves.
This systematically underestimates the exact arc length
of the spatial trajectory, which lies on the calotte sur-
face. This can be avoided by using the third inter-
polation scheme, generating a 3D spline curve. This
method, however, needs an additional distance check,
which currently appears to be too expensive. In this
specific application, where the tool path is rather close
to being a planar curve, it is well justified to neglect the
deviation from the plane for the arc length computa-
tion. For more curved objects, however, it will become
necessary to use spatial trajectories of the tool for con-
trolling the speed.

Clearly, the reduction of forces which are present
in the machinery extends the lifetime and reduces the
number of maintenance intervals of the calotte cutting
system. Also, it increases the accuracy of the trajec-
tory of the cutting wheel, and it is therefore simpler
and more reliable to break the glass surface along the
desired mirror boundary. Consequently, less postpro-
cessing (smoothing) of the rim of the mirror is needed,
which reduces the amount of manual work.

Concluding remarks

As demonstrated in our case study, polynomial spline
curves can directly be used for NC machining. Com-
pared to the traditional piecewise linear/circular repre-
sentations, the higher analytical continuity entails se-
vere advantages, such as extended lifetime of the ma-
chinery, longer maintenance intervals, and higher qual-
ity of the products.

The arc length of polynomial spline curves is not
directly available, which causes additional computa-
tional problems. In our implementation, this issue has
been addressed by numerical quadratures. The results,
however, are not fully satisfying yet. We think that this
problem needs to be addressed by further research.

As one possibility, one should further explore
the potential of Pythagorean hodograph (PH) curves,
which have been developed by Farouki in a series of pa-
pers (see [2] and the references cited therein). For this
remarkable class of curves, the arc length is a simple
polynomial function of the parameter. The construction
of PH spline curves with C2 or G2 continuity, how-
ever, causes again some computational problems. In
the planar case, it either involves the solution of global
systems of polynomial equations [1], or it requires root
finding procedures for quartic polynomials, and the ex-
istence of solutions is not guaranteed a priori [9]. The
situation is even more difficult for spatial PH curves,
where no related techniques seem to be currently avail-
able.

Instead of resorting to this somewhat exotic – al-
though remarkable – class of curves, it might be a use-
ful alternative to augment the existing tools for spline
curves with techniques for improving the distribution
of the parametric speed; this could help to reduce the
error which is introduced by the numerical quadratures.
So far, the existing techniques use piecewise rational
curves [3].

Acknowledgments

The authors wish to thank the anonymous referee
for his helpful comments. The second author was
supported by the Austrian Science foundation (FWF)
through project 15 of the SFB F013 “Numerical and
Symbolic Scientific Computing” at the University of
Linz, and by the European commission through the
5th framework programme, project GAIA II “Intersec-
tion algorithms for geometry based IT-applications us-
ing approximate algebraic methods”, contract no. IST-
2002-35512.

6



References

[1] G. Albrecht and R.T. Farouki, Construction of
C2 Pythagorean-hodograph interpolating splines
by the homotopy method, Advances in Computa-
tional Mathematics 5 (1996), 417-442.

[2] R.T. Farouki, Pythagorean-hodograph curves, in:
Handbook of Computer Aided Geometric Design
(G. Farin, J. Hoschek, and M-S. Kim, eds.), Else-
vier, to appear (2002).

[3] P. Costantini, R.T. Farouki, C. Manni, and A. Ses-
tini, Computation of optimal composite param-
eterizations, Computer Aided Geometric Design
18 (2001), 875-897.

[4] R.T. Farouki, Y.-F. Tsai, and B. Feldman, Per-
formance analysis of CNC interpolators for time-
dependent feedrates along PH curves, Computer
Aided Geometric Design 18 (2001), 245-265.

[5] R.T. Farouki and Y.-F. Tsai, Exact Taylor series
coefficients for variable-feedrate CNC curve in-
terpolators, Computer Aided Design 33 (2001),
155-165.

[6] R.T. Farouki, T.S. Smith and S.D. Timar,
Specification of time-optimal feedrates
for curved tool paths in 3-axis ma-
chining, preprint (2002) (available from
http://mae.ucdavis.edu/˜farouki)
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