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This chapter demonstrates that the techniques of Computer Aided Geometric Design
can be generalized to Kinematics, Computer Animation, and Robotics. Our approach
relies on spatial rational spline motions which can be seen as the kinematical analogue of
rational spline curves. The potential applications include keyframe interpolation in Com-
puter Graphics, motion planning in Robotics, and sweep surface modelling in Geometric
Design.

1. INTRODUCTION

The idea to use the powerful tools of Computer Aided Geometric Design in spatial
kinematics originated in Computer Graphics, where rigid body motions are needed for
visualizing moving objects in Computer Animation (keyframe interpolation), and for gen-
erating smooth camera motions, e.g., in Virtual Reality. Initially, the Bézier technique
was generalized to the unit quaternion sphere via ‘slerping’ (see Section 4.1), following
ideas by Shoemake and others [33,36,44]. This technique generates unit quaternion curves
which can be identified with spherical motions, thus representing the rotational part of a
rigid body motion. Although this and similar generalizations seem to work well, and are
apparently still in use in Computer Graphics [14], it was soon realized that these spherical
generalizations of the standard algorithms lead to major difficulties, such as the absence
of a subdivision property, non—linear interpolation conditions, the difficult parametric
representation of the resulting point trajectories, and problems with the construction of
C? (acceleration continuous) motions, see Section 4.2 for more.

Independently, a similar approach was developed by Ge and Ravani in Robotics, for
designing robot motions via Bézier type curves in dual quaternion space [10]. Unlike the
slerp techniques, this approach produces motions with rational point trajectories, the so—
called rational motions. In kinematical geometry, these motions had been studied since
the end of the 19th century [5,41,50].

Another source of the theory of rational motions can be identified in the discussion
of sweeping (kinematical) surfaces. Sweeping is a very intuitive technique for generating
free—form surfaces, by moving a (rigid or possibly evolving) profile curve through space,
see Figure 12 of Bézier’s preface to [8]. One of the first publications on rational sweeping



surfaces is due to Roschel [31,42].

Computational techniques for rational spline motions have been further explored in
the simultaneous Ph.D. theses of the two authors [19,45]. These motions have now been
developed into a useful tool for geometric motion design and for applications in Robotics,
Computer Graphics, and Geometric Modelling. Some of the results have been gathered
in this chapter, which is organized as follows. The next two sections summarize funda-
mentals from spatial kinematics and on quaternions. Section 4 is devoted to the various
non-rational techniques for motion design, using curves on the unit quaternion sphere.
After introducing spherical rational motions (Section 5), we give an outline of available al-
gorithms for spatial rational motions, along with a brief discussion of several applications.
Finally we conclude this chapter and suggest some directions for further research.

2. THE KINEMATICAL MAPPING

This section collects some facts about the description of rigid body motions by homo-
geneous 4 X 4 matrices. We use Euler parameters to represent rotation matrices, leading
directly to the kinematical mapping of spherical kinematics.

2.1. Coordinates

In the sequel we describe the points p in 3-space with the help of homogeneous coor-
dinates p = (po, p1,p2,p3)' € R* \ {(0,0,0,0)"}. If the 0-th component satisfies py # 0,
we may obtain the corresponding Cartesian coordinates p = (py1,p2,p3)’ € R? of the very
point p from p; = p;/po, where i = 1,2,3. The homogeneous coordinate vectors p and
Ap describe the same point for any constant factor A # 0. Consequently, the set of points
in 3-space, which is projectively closed by adding points at infinity, is identified with the
set of all one-dimensional subspaces in R*.

The coordinate py of p is commonly referred to as the homogenizing coordinate or the
weight of p. Points with py = 0 correspond to points at infinity; they can be identified
with the oo? equivalence classes of parallel lines. For further information on homogeneous
coordinates see Chapter 7.

2.2. Motions of a rigid body

Let us consider two coordinate systems in three dimensional Euclidean space, the fized
coordinate system E? (“world coordinates”) and the moving coordinate system E3. Points
can be described in either coordinate system. We denote the fixed coordinates of a point
by p or p, and the moving coordinates by p or p, respectively. In order to convert moving
coordinates into fixed coordinates we have to apply the coordinate transformation that
maps E3 onto E3. Using homogeneous coordinates, this coordinate transformation can
be represented by a 4 X 4 matrix of the form
mog| 0 0 0
mio | M11 Mi2 T3
Moo | M21 Moo Mag
m3o | M31 M3z2 M33

M = y with mMo,0 7é 0, (1)

such that p — p = Mp. The homogeneous resp. Cartesian coordinate vectors
mig Moo M
T T 1,0 2,0 3,0\T
v=M (1, O, 0, O) = (mo,o, ml’(), mg,o, mg,o) resp. v —= s s (2)
Mmoo Mo,0 0,0
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describe the position of the origin in E® with respect to the fixed coordinate system E3.
The 3 x 3 matrix R,

mi1 M1 M13
1
R= — Mo1 Mo Mags |, (3)
0,0
’ m31 M32 M33

describes the orientation of the moving coordinate system E3. ltisa special orthogonal
matriz.. That is, it satisfies the orthogonality condition RR' = I where I denotes the
3 x 3 identity matrix, and det(R) = 1.

If the matrix M = M (t) depends on the time ¢, where ¢ varies in some interval [tg, ],
then we speak of a rigid body motion, cf. Figure 1, left. For any point p € E3 of the

moving system E3 we obtain its trajectory from
E3 x [to,t;] — E*: (p,t) — p(t)=M()p (4)

where M (t) is of the form (1) with time-dependent components m; ;(t).
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Figure 1. Spatial motion of a rigid body (left) and the associated spherical motion (right).

Obviously, the trajectory of the origin in homogeneous and Cartesian coordinates is
given by v(t) and v(t), see (2).
One may also describe the motion directly in Cartesian coordinates, which leads to

Ex [to,t1] — E*: (p,t) = v(t)+R()p (5)

where v(t) are the Cartesian coordinates of the trajectory of the origin (2).

The associated rotational (or spherical) part of the motion is described by the special
orthogonal matrix R = R(t), see (3). If the trajectory of the origin is replaced with the
null vector, v(t) = (0,0,0)T, then the trajectory p(t) of any point p lies on a sphere



of radius ||p||, centered at the origin. Consequently, the rotational part R(t) of M(t)
describes an intrinsic motion of the unit sphere, see Figure 1, right. It will be called the
associated spherical motion of the rigid body motion M(¢). In the figure, it is visualized
by several positions of a moving triangle on the unit sphere.

2.3. Euler parameters

When designing motions we encounter the problem that the rotational part R(t) of
M (t) has to satisfy the orthogonality conditions. Consequently it is not possible to simply
prescribe the functions m; ;(t) since the resulting motion would in general not preserve
the rigidity of the object; it would not be Euclidean. In order to resolve this problem,
we will describe R by a set of independent parameters. There exist a number of different
approaches. A well-known set of parameters is based on a classical result of Euler: any
special orthogonal 3 x 3 matrix R can be written as

G+E—¢—¢  2(q1o—900)  2(133+9042)
R=| 2(qq+qe) @-¢G+6-9 2(0203—000) (6)
2(193—q0q2)  2(q2q3+90q1) G- —¢r+¢3

where the g; satisfy
G +ai+a+a=1 (7)

The 4 parameters Q° = (qo, q1,92,q3) are called the (normalized) “Fuler parameters”.
They should not be confused with Eulerian angles, which are also often used in spatial
kinematics! Note that “antipodal” Euler parameters +Q° are correspond to the same
rotation matrix R. If we further denote

Go = €08 5 and g | =sin= T (8)

with a unit vector ¥, we may give a simple geometric interpretation of these parameters;
the spherical displacement described by R is a rotation with angle ¢ about the axis
spanned by T, cf. Figure 2.

Given a rigid body motion M = M(t), there are various ways to compute its normalized
Euler parameters. By comparing (1) and (6) we obtain the relations

Qo q1:Q2:q3 =Moo+ M11+ Moo+ M3g3:Mga— Mg M3 —M31:Ma1 — M2
=Mmgo — Ma3 Moo+ M11 — Mg —M33:Mg1+ M1 :M13+ M3 9)
=M1z —M31:Mo1+ My Moo — M1+ M22—M33:M32+ Mogs
=Mg1 — My :My3+M3z1: M3+ Ma3:Myg— M1 — Moo+ M33,

see [49]. At least one of these equations gives a result different from 0:0: 0 : 0. which
may then be used, along with (7), to determine the normalized Euler parameters.

2.4. The kinematical mapping
Examining equations (6) and (9) we notice that there is a birational transformation
which maps each rotation matrix onto two antipodal vectors +Q° = +(qq, q1, g2, g3) of
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Figure 2. The geometric meaning of the  Figure 3. The kinematical mapping identifies
Euler parameters. ¢: angle of rotation, a spherical motion with a pair of antipodal
r: unit direction vector of the axis. curves on the 4D unit sphere.

normalized Euler parameters, and vice versa. This transformation is called the kinematical
mapping of spherical kinematics.

If we identify Q° with a point in a four dimensional image space, the kinematical
mapping defines a correspondence between the 3D rotations and the pairs of antipodal
points on the 4D unit sphere S* C R*. Furthermore, we may identify a spherical motion
with a set of two antipodal curves on the unit sphere S®. This property is schematically
illustrated in Figure 3. If no ambiguity is to be expected, then both the mapping from
the set of 3D rotations to the unit sphere with identified antipodal points, and its inverse,
will be referred to as the the kinematical mapping.

3. QUATERNIONS

Quaternions are a powerful tool to describe 3D rotations in spherical kinematics. In
the following we will introduce the basic concepts of quaternion calculus and explain their
relationship with the kinematical mapping.

3.1. Fundamentals
For any quadruple of real numbers qq, .., g3, we call the pair

Q= [q,q] = \QQJ (a1, q2,03)" ] (10)

real part vector part

of the scalar gy and the vector q = (q1,q2,q3) " a quaternion. The quaternion Q = [qo, —d]
is called the conjugate quaternion of Q. Let us further define two operations that act on
the set of all quaternions Hi,

Q+R = lqo,d] + [ro, ¥ = [ g0+ 70, G+T],
QxR = [go, ] *[ro,F] =[goro— G T, goT + oG+ d X T]. (11)
real‘i)art vector part




With these operations, the set of quaternions H forms a skew field (Hamilton, 1840).
Quaternions with

Q+xQ=[g+d +a +d,(0,0,0)] =[1,(0,0,0)] (12)

are called unit quaternions, they are marked with Q°. (Compare with the definition of
normalized Euler parameters, (7).) Quaternions with vanishing scalar part [0, p] will be
identified with vectors in R®. We may express the usual scalar and cross product of two
vectors q, T in terms of the quaternion multiplication

[d-F,(0,0,0)] = —5 ([0,d] [0, 7] + [0, ] * [0, d]),

- - - - (13)
[O,qu"] = % ([qu]*[ovr]_[oaﬂ*[oaq])
Now we consider the quaternion product
p—=0=Q"«[0,p] xQ°, (14)
—x

where Q° is a unit quaternion, resulting in a vector-type quaternion [0, p'] ~ p'. In fact,
this product can be shown to satisfy the condition

9#+[0,p]* Q= -9 x[0,B]  Q, (15)

hence X = —X, which characterizes the vector-type quaternions. With the help of
the relationships (13) it can easily be shown that the mapping p — P’ preserves both
products between any two vectors p and . Hence, the mapping (14) can equivalently be
described as

p—pB =UP, (16)

where U is a special orthogonal matrix, depending on the four components of the quater-
nion Q°. A short calculation indeed confirms that the matriz U is the special orthogonal
matriz with the normalized Euler parameters Q°, see (6). Moreover, the composition of
rotations U = U, - U, corresponds to the multiplication of quaternions Q° = Q5 x QY.

3.2. Homogeneous quaternions and the kinematical mapping
We now rewrite equation (14) in order to allow the use of non-normalized quaternions,
by switching to a homogeneous representation. Firstly we note that (14) is equivalent to

[1,8] = [1,5]= Q" [1, ]+ Q°

In addition, we identify the homogeneous coordinates of a point p with the quaternion
[Do, (P1, P2, p3)]- This leads us to the homogeneous quaternion representation of a rotation
(or spherical displacement),

Pp=0*p*Q, (17)

where p and p are the homogeneous coordinates of a point with respect to fixed and
moving coordinate system, respectively, and @Q is a quaternion. The associated unit

quaternions £Q° = ||Q||7! Q, where ||Q|| = vV Q * Q, consist of the Euler parameters
according to (8).
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Similar to the homogeneous coordinates of a point p, the quaternion @ in (17) can be
considered a homogeneous representation of the rotation. Again, as in the point case,
linearly dependent quaternions describe the same rotation. However, the normalization
(12) defines a different underlying geometric structure than in the point case, where nor-
malized coordinates were characterized by py = 1. In the quaternion space, the geometric
structure is that of a 3-dimensional elliptic space , see Chapter 7, [2]. The unit quater-
nion sphere S? C R* with identified pairs of antipodal points is the standard model of this
geometry. For our applications, it is more appropriate to use homogeneous coordinates
for points in 3—dimensional elliptic (i.e. quaternion) space. These coordinates will be
called homogeneous quaternion coordinates of rotations.

3.3. Summary: homogeneous quaternion coordinates for 3D rotations
The kinematical mapping maps a point Q # [0, (0,0, 0)] in 3—-dimensional elliptic space,
described by homogeneous quaternion coordinates, to the special orthogonal matrix

U(Q) = U(Q), (18)

@+i—GE—  2(q2—90)  2(a193+9092)
U(Q) = (uij)ijm123= | 2(q102+900) GB—-C+6B—0 2(¢03—qq1) (19)
20q—q00) 2(@e@et+epq) G—¢—a+4

and uo(Q) = ¢+¢i+¢5+¢3. Any point in elliptic 3-space Q corresponds uniquely to a
rotation (or spherical displacement) U. Every curve in homogeneous quaternion coordi-
nates Q(¢) can be identified with an intrinsic spherical motion U(¢). This kinematical
mapping is birational. For more information on quaternions, kinematic mappings and
their application we refer the reader to [2,3,9,30,49].

4. MOTION DESIGN USING CURVES ON §?

As we have seen in the previous sections, spherical motions are equivalent with curves
in elliptic 3-space. The standard model of elliptic 3-space is the unit quaternion sphere S3
in R* with identified pairs of antipodal points. This section discusses some methods that
have been proposed in the literature for designing spherical motions with the help of
curves on S3.

4.1. Slerping

The algorithm of de Casteljau is based on iterated linear interpolation, see Section 2.3
of Chapter ?. Though conceptually simple, it gives a very effective tool for curve design
that is numerically stable and easy to implement. As a simple approach to curve design
on S? one may translate de Casteljau’s algorithm into the geometry of a sphere, in order
to produce spherical Bézier-type curves. This is achieved by replacing the line segment
connecting two points in Euclidean space with the great circular arc (the geodesic) between
two points on a sphere.

More precisely, consider two pointsB, and B; on the unit quaternion sphere S3. We
define the point B}(t) = slerp(By, Bi,t) such that B}(t) lies on the great circular arc



passing through By and B; and the angles between the coordinate vectors of By, B; and
Bl (t) satisfy

Z(Bo, BL()) : Z(BL(t),B) =t : (1—1).

As t varies from 0 to 1, the point Bj(¢) traces a great circular arc from By to B;. Based
on this spherical linear interpolation (‘slerp’) we are now able to define a spherical version
of de Casteljau’s algorithm as illustrated in Figure 4.

(20)

original control polygon

- curvetangent

curve point x(t)

g control polygon ;
of left segment [0,t] of right segment [t,1]

Figure 4. Spherical de Casteljau algo-
rithm. Based on a spherical control polygon
By, .., B,, repeated spherical linear interpola-

Figure 5. Subdivision and tangent prop-
erty of Bézier curves, cf. Chapter 7.
Both properties are not valid for the

tion results in a spherical curve. spherical de Casteljau algorithm.

This technique is commonly referred to as ‘slerping’. It has been introduced by Shoe-
make in [44] and has since then been subject of much research, mainly in Computer
Graphics, e.g. [27,33,36].

As a first problem, the point Bj(¢) is not unique. While this problem can easily be
resolved, for example, by restricting B} to the shorter arc connecting By with B, there
are more involved problems that are caused by the subtle differences between elliptic and
Euclidean geometry.

4.2. Problems of slerping

Two fundamental properties of de Casteljau’s algorithm are the subdivision property,
and — closely related to it — the fact that the points obtained in last step of the algorithm
span the tangent of the resulting Bézier curve. See Sections 2.3 and 2.5 of Chapter ?
for details. Unfortunately, both properties are lost by the spherical version of the algo-
rithm. The lack of these fundamental properties has serious consequences, as none of the
algorithms derived from the subdivision property can be transferred onto the sphere. In
particular, C? joints are difficult to construct, as the standard Bézier-based construction
(leading directly to B-splines, see [16, Section 4.1.2]) is closely related to extrapolation
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of a curve via de Casteljau’s algorithm, cf. [33]. Moreover, it is not possible to use the
efficient subdivision-based rendering methods for Bézier curves in the spherical situation.

In addition to these missing fundamental properties, it is very complicated to analyze
the curves (and the resulting spherical motions) which result from slerping. Even for rel-
atively low degrees, the parametric representations are rather involved, and it is therefore
difficult to apply standard tools from analysis and differential geometry.

Finally, the interpolation problem for slerp Bézier curves leads to a non—linear system of
equations; only approximate solutions can be found. This is clearly a serious disadvantage,
as interpolation is one of the basic techniques for curve design.

4.3. Other approaches

Alternative algorithms for constructing smooth unit quaternion splines have been pro-
posed by various authors, see [1,25,27,40,26] and elsewhere. For instance, these algorithm
are based on the cumulative form of a Bézier or B-spline curve, or on blending techniques
for spherical curves. In a more general setting, Park and Ravani [35] have studied Bézier
curves on Riemannian manifolds.

As an alternative to generalizing the de Casteljau algorithm it is also possible to gen-
eralize the associated subdivision schemes to the spherical case. This idea has stimulated
research on non-linear corner cutting algorithms on Riemannian manifolds. For instance,
in the case of cubic Bézier curves (which corresponds to the Lane-Riesenfeld algorithm),
a thorough analysis has been given by Noakes [34], showing that the limit curve is dif-
ferentiable, and its derivative Lipschitz. Note that non-linear corner cutting, although
conceptually simple, requires rather involved mathematical tools, both for generating and
for analyzing motion trajectories.

A detailed study of computational techniques for motion design can be found in the
survey article by Roschel [43], providing many further references.

4.4. Motion design — desired features
We conclude this section by listing a few features which should be provided by algo-
rithms for motion design.

e The evaluation scheme should be simple and efficient, preferably without involving
non-rational functions. Motion design algorithms should be easy to implement, robust
and numerically stable. The resulting motion splines should at least exhibit symmetry
and subdivision properties.

e Motion trajectories should have a simple representation which follows a generally ac-
cepted standard in Computer Aided Design. If possible, trajectories should be repre-
sented as NURBS curves.

e Conditions for interpolation of given data (positions, velocities etc.) and for smooth
joints should be easily to formulate and computationally efficient (preferably linear
conditions).

e Motion design algorithms (e.g. via interpolation techniques) should be invariant with
respect to the choice of the fixed coordinate system (world coordinates), and with
respect to the choice of the orientation of the moving coordinate system. That is, co-
ordinate transformations and interpolation algorithms should commute. An additional
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invariance with respect to the choice of the origin of the moving coordinate system is
not really useful, as the origin will mostly have a special meaning in applications, such
as the center of gravity or the ‘tool center point’ (TCP).

None of the approaches we have examined so far satisfies all of these properties. In
particular we note that point trajectories generated by slerping algorithms are non-rational
and therefore do not comply with the industrial NURBS standard (see Chapter 7). In
the remainder of this chapter we present an approach based on the kinematical mapping
which produces motions generating point trajectories in NURBS form.

5. SPHERICAL RATIONAL MOTIONS

The kinematical mapping (18) can be used in order to apply the Bézier and B-spline
techniques to spherical motions, following the ideas in [10,37]. For instance, consider a
rational Bézier curve of degree n in elliptic 3-space,

=0
with the Bernstein polynomlals B = (’:) t'(1—1¢)™ . Its control polygon consists of the

control points B; = [bio, (bi1, bi2,b )T] € H and the Farin points
Fiiv1 = Bi + By, (22)

see Figure 6, left. We use homogeneous coordinates to represent these points. Conse-
quently, the Farin points (also called weight or frame points) are located on the edges of
the control polygon; they represent the weight ratio of neighbouring control points. For
further information the reader should consult, e.g., [7,11], and Chapter ?. The combina-
tion of control and Farin points provides a projectively invariant description of a rational
Bézier or B-spline curve. It is also invariant in the sense of elliptic geometry, as elliptic
transformations are special cases of projective mappings.

Now we apply the kinematical mapping, both to the rational Bézier curve (21) and to
its control and Farin points. Firstly, consider the image of the linear Bézier curve,

QW) =(1—1t) By+t By, te]o1]. (23)

It turns out to be a rotation of the unit sphere with a constant axis. More precisely, the
components of the rotation matrix U™ ( ) = U(QW(t)) are quadratic rational functions,
cf. (18). The trajectory of any point p of the moving system is simply a circular arc,
which is described as as a rational quadratic curve U (t) p.

Next we consider the image of a rational Bézier curve (21) of degree n, see Figure 6.
It is a spherical rational motion of degree 2n, as the components of U(t) = U(Q(t)) are
rational functions of degree 2n. The trajectory of any point p of the moving system is the
rational curve U(t) p of degree 2n. As an example, Fig. 6 shows a cubic rational Bézier
curve and its image under the kinematical mapping.

More generally, the kinematical mapping could be applied to a rational B-spline curve
of degree d in elliptic 3-space, resulting from (21) by replacing the Bernstein polynomials
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Figure 6. The image of a rational Bézier curve in elliptic 3-space under the kinematical
mapping is a spherical rational motion of degree 2n. Applying the mapping to the Bézier
control polygon gives a control structure for spherical rational motions.

B;(t) with B-splines defined over a suitable knot sequence. This produces a spherical
rational spline motion U(Q(t)) of degree 2d. The computation of the B-spline form
involves the evaluation of products of B-splines, see [32]. If the preimage curve has single
interior knots, then both the preimage curve and the spherical rational spline motion are
C?%1. Hence, the inner knots of the spline functions ug(Q(t)) and U(Q(t)) have at least
multiplicity d+ 1. Computational techniques for rational spline motions in B-spline form,
including a formula for their Bézier segments, have been discussed in [22].

By applying the kinematical mapping to the control and Farin points of the rational
Bézier (or B-spline) curve we obtain an intrinsic control structure for spherical rational
(spline) motions. This control structure has been introduced by Pottmann [37]. It is
obtained by applying the kinematical mapping to the control and Farin points of the
rational curve, leading to control positions and Farin positions. The edges of the control
polygon are mapped to rotations of the unit sphere, joining two neighbouring control
positions and the corresponding Farin position. In fact, the edges can be seen as as linear
rational Bézier curves Bj(t)Bi—1 + B{(t)B; (i = 1,...,n); the Farin point is associated
with the parameter value t = %

The intrinsic control structure is suitable for interactive motion design. An example
is shown in Figure 7. The two spherical rational Bézier motions are obtained from the
motion of Figure 6 by changing the first control position U(B;) (left) and by modifying
the weight of the second control position U(B,) (right), leading to modified Farin points
FLQ and .'/_‘-2,3.
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Figure 7. Interactive motion design using the intrinsic control structure of a spherical
rational motion. Modification of a control position (left) and of a weight (right), compare
with Figure 6.

A similar technique can be used to generate an intrinsic control structure for spher-
ical rational curves, using the so—called generalized stereographic projection (see [6,37],
cf. Chapter 7. In fact, the generalized stereographic projection can be derived by restrict-
ing the kinematical mapping (18) to the trajectory of a single point.

In principle, the properties of the Bézier and B-spline control points (convex hull prop-
erty etc.) can be transferred to the intrinsic control structure of a spherical rational
motion, with the help of the kinematical mapping. However, it is difficult to give a useful
geometric interpretation, as the image of a volume in elliptic space is somewhat difficult
to visualize on the sphere.

Consider a spherical rational motion R(t) = Tl(t)R(t) of degree m. That is, the denom-
inator ro(t) and the 9 components of R(t) are polynomials of maximum degree m, and
the matrices R(t) are special orthogonal matrices for all ¢. Then, the trajectory R(¢)p
of any point p is a spherical rational curve of degree m, on the sphere (centered at the
origin) with radius ||p||. Clearly, by applying the kinematical mapping to a rational curve
of degree n we obtain a spherical rational motion R(t) of degree m = 2n. Conversely, one
may ask whether any motion can be constructed that way.

Proposition [18]. If the denominator ro(t) and the 9 components of R(t) do not share
polynomial factors, i.e.

ng{’f‘o (t), Tl,l(t), 1,2 (t), 1,3 (t), 7'2,1(15), 2,2 (t), 72,3 (t), 7'3,1(15), 3,2 (t), 73,3 (t)} =1 (24)

holds in the polynomial ring R[t], then m is even, and the spherical rational motion
R(t) = ﬁR(t) can be generated by applying the kinematical mapping U(.) to a rational

curve Q(t) of degree m/2.
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The proof consists of two parts. Firstly it is shown that any spherical rational motion
corresponds to a rational curve in elliptic 3-space, as it has rational Euler parameters Q(t).
This can be concluded from (9), expressing the Euler parameters as rational functions of
the matrix components. Secondly, it can be shown that any common factor of the matrix
components is a common factor of the corresponding Euler parameters. This observation
leads to the degree bound of the proposition. For the details of the proof the reader is
referred to [18,20].

Summing up, spherical rational motions can be generated by applying the kinemat-
ical mapping to rational curves in elliptic 3-space. According to the proposition, this
construction produces motions having the minimum possible degree. In addition, the
Bézier resp. B-spline control structure of rational spline curves can be translated to the
kinematical setting.

6. SPATIAL RATIONAL MOTIONS

The results on spherical rational spline motions can be extended to spatial ones, by
combining them with rational trajectories of the origin. This section discusses the con-
struction and classification of rational spline motions, and the use of control polygons and
control structures.

6.1. Construction

Recall from Section 2.2 that the motion of a rigid body is described by a time-dependent
transformation p — p(t) = M (t) p of the form (1), mapping any point p of the moving
system to a point on its trajectory p(t). We use homogeneous coordinates to represent
both the points and the transformation.

If the components of the matrix M (t) are rational (spline) functions of degree m, then
the corresponding rigid body motion is called a rational (spline) motion of degree n.
All trajectories are rational (spline) curves of degree m, see Figure 8 for an example.
Consequently, as the trajectories can be described as NURBS curves, rational motions
comply with industrial CAD standards.

Consider a transformation matrix of the form

vg(t)(us)(t)‘ 00 0

Ult

MO=1" 0w | wove | (25)
’Ug(t)

The associated spherical motion U(t) = [1/uo(t)] U(t) has been constructed by applying
the kinematical mapping (18) to a rational spline curve Q(t) of degree k in elliptic 3
space; the piecewise polynomials vj(t) of degree p and wv;(t),vq(t), v3(t) of degree ¢ are
arbitrary. Then, the motion (25) describes a spatial rational spline motion of degree
m = max(q, p + 2k).

The origin of the moving space generates the trajectory

M(t) (1,0,0,0)" = (vg(t) uo(t), vi(t), va(t), vs(t)) " (26)

Given a spherical rational spline motion, the spatial rational spline motion (25) may
combine any trajectory p(t) = (po(t), p1(t), p2(t), p3(t)) T of the origin with it, by choosing
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control Farin
point(s)

Figure 8. Example - a rational motion of degree 6. The motion is visualized by the moving
unit cube. In addition, the trajectory of a point, along with its rational Bézier control
polygon consisting of control points b; and Farin points f; ;1 is shown.

vg(t) = po(t) and wv;(t) = ue(t) pi(t), ¢ = 1,2,3. Generally, by combining a spherical
rational spline motion of degree n = 2k with a degree ¢ rational spline curve one obtains
a spatial rational spline motion of degree m = 2k +¢. In applications, however, the degree
should often be kept as small as possible. This can be achieved by choosing trajectories
v(t) whose denominator vg(t) = v§(t)ug(t) equals the denominator ug of the associated
spherical rational spline motion, i.e., by choosing ug = 1.

Similar to the previous section, it is a natural question to ask whether any spatial
rational (Bézier) motion can be generated with the help of formula (25).

Theorem [18]. Any spatial rational motion of degree m is obtained from (25) by applying
the kinematical mapping to a rational (Bézier) curve Q(t) of degree k in elliptic 3-space,
where the degree k satisfies 0 < k < |m/2], leading to the associated spherical rational
motion U(Q(t)) = [1/uo(Q(t))] U(Q(t)) of degree 2k, and choosing polynomials v§(t) of
degree m — 2k, and v1(t),v2(t), v3(t) of degree m.

This result follows immediately from the previous proposition. Consequently, there are
|m/2| + 1 different classes of rational motions of degree m, corresponding to the degree
2k of the associated spherical rational motion.

6.2. Special cases

Rational motions of degree m < 4 have thoroughly been studied in the theory of space
kinematics. The simplest non—trivial example, given by quadratic rational motions with
k =1, can be traced back to Darboux [3,5]. In the general situation, these motions are
obtained by composing a planar elliptic motion with a harmonic oscillation. The elliptic
motion is a special trochoidal motion: a small circle (radius ) rolls within a in big circle
(radius R), where r : R =1 : 2, see Figure 9. All trajectories are ellipses, except for the
points on the rim of the small circle, which trace diameters of the big circle. This motion is
extended into 3-space, where it becomes the rolling of two circular cylinders. By adding
a synchronized harmonic oscillation in the direction of the cylinders’ axes we obtain a
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Darbouz motion, see again Figure 9. As the elliptic motion and the harmonic oscillation
have equal frequencies, all trajectories are still ellipses. Darboux motions can be shown

to be the most general truly spatial motions which generate planar point trajectories for
all points of the moving system.

harmonic oscillation

DINSEAR
\ elliptic motion

Figure 9. Elliptic motion (left) and Darboux motion (right).

More recently, a thorough geometric analysis of rational motions of degree 3 and 4 has
been given by Wunderlich and Réschel [41,50].

6.3. Affine control structure

Consider again a spatial rational spline motion of degree n. It is described by a trans-
formation matrix M (t), see (1) and (25), whose components are piecewise polynomial
functions (splines) of degree n. Consequently, one may represent the transformation ma-
trix in B-spline form (or even in Bézier form, in the case of a spatial rational motion),

M) =" G Bi(t), telab], (27)

with 4 x 4 control matrices C; and B-splines B;(t), defined with over a suitable associated
knot sequence. Similar to the transformation matrices M(t), the coefficient matrices

Ci = (cg'?c)j,kzo,...A satisfy

) =) =) =0, i=0,...,N. 8)

The orthogonality condition (3), however, is generally not satisfied (except for control ma-
trices describing positions, e.g., at the boundaries — if the boundary knots have sufficient
multiplicity).
Any point p of the moving system traces a rational B-spline curve,
N

M(t)p = Z [CiB] Bi(t), (29)

1=0
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with control points C; p and weights py c((f}) (1=0,...,N). Alternatively, one may again
use Farin points to specify the weight ratios, (C;—; +Cy)p (i =1,...,N).

Consider a moving object @, which is described as a bounded set of points in the
moving system. Collecting the control and Farin points of the trajectories we obtain the
control positions C; O and Farin positions (C;_1 + Cj) 0. Generally, the transformations
C; and (C;_1 + C;) do not preserve the rigidity (i.e., distances and angles) of the object,
as the orthogonality condition (3) is not satisfied. The control and Farin positions are
affine images of the moving object, as the matrices describe affine mappings (preserving
ratios and parallelism), due to (28). The combination of control and Farin positions is
called the affine control structure, see [22,45].

An example is shown in Figure 10a, b. The spatial rational motion (degree 6) of the
moving unit cube (a) has been generated by composing the spherical rational motion of
Figure 6 with a suitable trajectory of the origin (a rational Bézier curve of degree 6). We
chose v§ = 1 in (25), hence the resulting spatial motion has still degree 6. The affine
control and Farin positions (b) are obtained by collecting the control and Farin points of
the trajectories generated by the points of the moving unit cube.

= =

=k

modified affine
control position

% 2 & &

&
G
modified S
motion @ @
() (d)

spatial
rational
motion

(a)

Figure 10. Two spatial rational motions (a,c) of degree 6 of a moving unit cube, and their
affine control structure (b,d), consisting of control positions (solid) and Farin positions
(wireframe). For both motions, the associated spherical motion is that of Figure 6.

The affine control structure is not suitable for designing the spherical part of the spatial
rational motion. In particular, any change of the shape of the affine control positions,
and/or of the associated weights (Farin positions) may entail a violation of the orthog-
onality condition (3). The spherical part should be designed with the intrinsic control
structure of spherical rational motions. The affine control structure can be used for de-
signing the translational part of the motion, as it is possible to apply arbitrary translations



B
to the affine control positions. This is demonstrated in Figure 10c,d, where a translation
has been applied to the second control position.

The affine control structure can be used for efficiently generating a bounding volume
for the moving object. This fact has potential application to collision detection and
avoidance; it can also be used for approximate computation of envelopes. If the weights
are positive, then any intermediate position of the moving object is contained within the
convex hull of the affine control positions. If v§ = 1 has been chosen (which will mostly be
the case in applications), then the denominator of the spatial rational spline motion is a
sum of four squares, see (19). Consequently, the weights will mostly be positive; they can
always made non-negative by splitting the rational spline motion into suitable smaller
segments.

As an example, we demonstrate the convex hull property of a planar rational motion,
see Figure 11. Any planar rational spline motion of the x,x9—plane can be obtained from
(25) by applying the kinematical mapping to preimage curves Q(¢) in elliptic 3-space with
¢1(t) = ¢2(t) = 0, and choosing vs3(t) = 0. For a more detailed geometric discussion of
planar rational motions the reader should consult [46]. As observed there, the associated
affine control structure consists of equiform images of the moving object.

A planar rational motion, along with its (equiform) control and Farin positions is shown
in Figure 11a. The resulting convex hull gives a bound on the motion of the object. This
result can be made more accurate by splitting the motion into smaller segments and
generating the convex hull of the resulting control structures, see Figure 11b.

convex hull

control structure
and convex hull
of segment with domain
[0,0.25], [0.75,1],
[0.25,0.5], [0.5,0.75]

. control
N ("7 positions

Figure 11. Computing the convex hull of a planar rational motion. The motion and its
control structure (a), and the convex hulls obtained after splitting the curve into four
segments (b).

The same idea can be applied to spatial rational spline motions. However, the compu-
tation of the convex hull in 3D becomes more expensive, and alternative techniques (such
as bounding boxes) will be preferred.
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6.4. Some properties
Spatial rational spline motions provide various desirable features, making them a useful
tool in applications.

e The standard rational Bézier and B-spline techniques for CAGD can be applied, pro-
viding simple and efficient algorithms for evaluating these motions. Spatial rational
spline motions generate point trajectories which can easily be represented in B-spline
form, complying with industrial CAD standards. They can be equipped with control
structures which are suitable for interactive motion design and for generating convex
hulls of moving objects.

e Spatial rational spline motions have a subdivision property, as any subsegment can
again be described in rational spline form. Consequently, standard CAGD techniques
like hierarchical editing can be used. Moreover, it is possible to generate rational spline
motions with arbitrarily high order of differentiability. This was not the case for ‘slerp’
Bézier spline motions [33].

e The class of rational spline motions is invariant with respect to the choice of the

coordinate system in both the fixed and the moving system. Moreover, efficient in-
terpolation techniques, generalizing the standard interpolation algorithms for spline
curves, can easily be derived, see next section for details. They produce results which
are independent of the choice of the fixed coordinate system, and of the choice of the
orientation of the moving system [22].
The results of the interpolation algorithm described in the next section depend on
the choice of the origin of the moving system. This dependency is often desired in
applications, as the origin may have a special geometric meaning (e.g., the center of
gravity, tool center point). However, even this dependency can be avoided, using the
more sophisticated techniques of [20].

In addition, it is possible to represent trajectories of mowing planes in rational spline
form, and to introduce a dual control structure [23,45]. This leads to explicit formulas
for envelopes of moving planes [22,45] and, more generally, for envelopes of moving ra-
tional developable surfaces (including quadratic cylinders and cones) see [23,45,51]. As
an application one may compute the envelope of moving polyhedra, without numerical
approximation.

With the help of a kinematical mapping for spatial displacements, a slightly different
approach to the design of spatial rational motions has been developed by Ge and Ra-
vani [10]. It is based on the use of dual quaternions (numbers from the ring H + €H,
where €2 = 0), see [3]). Following this approach, the motion is described by a sequence of
control positions with associated dual weights. One obtains an intrinsic control structure
for spatial rational motions, whose “legs” are special Darboux motions (Darboux motions
with constant axis; the two cylinders degenerate into a fixed line). The control structure
is suitable for interactive motion design. However, this approach is closer to line trajec-
tories (i.e., ruled surfaces) than to point trajectories; consequently, it is more difficult to
control the trajectory of a specific point, such as the origin of the moving space. Also, the
influence of the dual weights is sometimes not very intuitive, and the control structure
does not provide a convex hull property. By restricting that approach to spherical control



positions one arrives again at the intrinsic control structure for spherical rational motions,
see Section 5.

6.5. Interpolation schemes and applications

Interpolation and approximation of given point data are fundamental techniques for
generating curves and surfaces in Computer Aided Geometric Design. This section demon-
strates that the standard interpolation schemes can be generalized to the kinematical
setting, with the help of spatial rational motions.

Let a sequence of positions (Pos;);—;,.. n of a moving object be given. Each position is
described by a coordinate transformation of the form (1) between fixed and moving system.
We assume that the origin of the moving coordinate system has a special meaning, such
as the center of gravity, tool center point (TCP), etc. The data are to be interpolated
with a spatial rational spline motion, see Figure 12.

Figure 12. Interpolation of 5 given positions of the unit cube with a spatial rational
rigid body motion. By browsing through this chapter, you will see an animation of the
associated spherical motion in the upper right corners of the odd pages.

In the sequel we give a brief summary of a the interpolation procedure. For further
details the reader should consult, e.g., [22].

1. Preprocessing. As the initial step of the interpolation procedure, the given data is
converted into quaternion form. More precisely, each of the given positions is described
by the Cartesian coordinates w; of the origins, and by the normalized Euler parameters
(unit quaternions) RY which are associated with the corresponding rotation matrices.
From (7) and (9) we obtain two solutions, corresponding to a pair of antipodal points
on the unit quaternion sphere S* C R* (H). We pick one of those points (i.e., the sign
of the normalized Euler parameters) such that neighbouring points R}, R}, on S*
belong to one hemisphere, that is the inner product of the corresponding vectors in R*

1 - _
(’R?, R?—H) = §(R9 * Rgﬂ + R?+1 * Rg) >0 (30)

should be non—negative.

Secondly, we need to associate parameter values ¢; with the given positions. Similar to
the methods for parameterizing point data (see [16, Section 4.4.1]), these parameters
can be estimated from the distances between the given positions. In addition to
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the distance of the origins, the difference of the orientations should be taken into
account. For instance, by generalizing the chordal parameterization, one may choose
the differences ¢, — t; proportional to

1w 1 — wil| + warccos (RYR}, ) (31)

with some weight w > 0 controlling the influence of the spherical part. Several other
possibilities are listed in [20].

. Interpolation of the spherical part. As the next step, we compute the preimage

curve Q(t) of the kinematical mapping from the interpolation conditions Q(t;) = RY.
This curve is a rational spline curve of degree d in elliptic 3—space, cf. (21). Knots
and degree are chosen such that the number of degrees of freedom equals the number
of unknowns, where additionally the Schoenberg-Whitney conditions (see Chapter ?)
are to be satisfied. For example, one may choose a cubic spline curve with not—a—knot
type boundary conditions, producing the knot vector

(tl,...,tl,tg,t4,...,tN_Q,tN,...,t]\Q (32)
N—— -~ /- ~~
4-fold knot  single knots  4-fold knot

The control quaternions B; of the preimage curve can be found by solving the resulting
banded system of linear equations, see Chapter ?.

Now we generate the spherical part of the interpolating motion by applying the kine-
matical mapping of spherical kinematics to the preimage spline curve. This results in

a spherical rational motion of degree 2d, described by the spline functions wug(t) and
U(t), see (25).

. Translational part. For the sake of simplicity we may choose v§(t) = 1. In order

to interpolate the translational parts of the given positions, we have to find spline
functions v (¢), vo(t), vs(t) satisfying the interpolation conditions v(t;) = w,, where

v(t) = (vi(t)/uo(t), va(t) /uo(t), vs(t)/uo(t) ) (33)

is the trajectory of the origin. It seems to be a natural choice to choose spline func-
tions vy (t), ve(t), vs(t) of degree 2d whose knots are those of the spline functions wug(t)
and U(t). This choice, however, leads to an underdetermined system of linear equa-
tions, as the translational part of the motion has far more degrees of freedom than
the spherical one. Consequently, additional constraints are needed to pick a unique
solution. These may be not-a-knot type conditions at inner knots, enforcing higher
order of differentiability for the trajectory of the origin. Alternatively, one may use
the additional degrees of freedom for minimizing quadratic ‘energy’ functionals, such
as

tN
/ |¥(¢)||*dt — Min. (34)
to

See Chapter ? for further information on this technique. In either case, the resulting
interpolating spline motion of degree 2d is found by solving a system of linear equations.



gﬂ 21
Various algorithms for interpolation with spline curves can be generalized to the kinemat-
ical setting, simply by applying them to the preimage curve of the kinematical mapping,
and combining the result with a suitable trajectory of the origin. For instance, a kinemat-
ical version of cubic Hermite splines has been implemented as part of a commercial robot
controller [15]. This leads to rational spline motions whose spherical part has degree 6.
Cubic Hermite splines provide some features which are essential in this application, such as
real-time capability and certain shape—preserving properties. Compared with traditional
techniques, the use of spline curves leads to a substantial reduction of the data volume,
and to enhanced programming of robot motions, in particular for the manufacturing of
free-form shapes.

Further computational techniques for rational spline motions include the optimization
(‘fairing’) of motion segments, to generate spherical motions that minimize (e.g.) the
integral of the squared angular acceleration (which can be seen as the analogue of cubic
spline curves). Moreover an algorithm for spline motion fitting has been used to recon-
struct the motion of the human knee joint from measurement data. See [19,22,24] for
additional information.

Although the above interpolation scheme for rational spline motions has many desir-
able features, it is not fully satisfying from the theoretical point of view, as it lacks
what was called ‘invariance with respect to parameterization’ or parameter invariance by
Roschel [12,43]. If we sample data (positions with associated parameters t;) from a ra-
tional spline motion and apply the interpolation procedure, including the preprocessing
step, then it will generally not reproduce the original motion, even if the same spline
spaces are used. This is due to the fact that the normalization (7) is only valid at the
original interpolation nodes, and not everywhere. In order to guarantee the reproduction
property one would need to use rational curves on the unit quaternion sphere S* € R*.

Such curves can be generated with the help of stereographic projection, but then the
results depend on the choice of the coordinates, as it is the case for the method described
in [17].

In the case of the sphere in 3—space, the generalized stereographic projection can be
shown to give results which are independent of the chosen system of coordinates, see Chap-
ter 7, [6]. Unfortunately, similar results for spheres in higher dimensions are currently not
available. Recently, Gfrerrer [12] has developed a new algorithm for interpolation with ra-
tional curves on hyperspheres of arbitrary dimension, producing coordinate-independent
results. However, the degree of the resulting spherical motion is about twice as high as
the one which would result from th earlier algorithm, and it may happen that no solutions
exist. Furthermore, the generalization of Gfrerrer’s method to rational spline curves is
still an open problem.

6.6. Rational frames and sweeping surfaces

The kinematical version of Hermite interpolation with cubic C*' splines has also been
used to generate highly accurate rational approximation of rotation minimizing frames,
using spatial rational spline motions of degree 6 [23]. In geometric modeling, the rotation
minimizing frame has been introduced by Klok as an alternative to the Frenet frame of a
space curve [13,29] . It is useful for sweep surface modeling, as it provides a robust and
intuitive way of moving a profile curve along a given ‘spine’ curve, see [48] for examples.
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As an alternative to the approximation of frames, one may also study spatial curves
which have an associated rational frame. A spatial rational motion is called a rational
frame (see Figure 13) of a given space curve, if the origin of the moving system travels
along that curve, and if additionally the tangent vector of the curve is always parallel to
the (say) #;—axis of the moving system.

spatial PH curve and associated rational frame

sweeping surface, generated by moving parabolic arc

Figure 13. Rational frame of a PH curve of degree 7 and a rational sweeping surface.

Note that these frames are closely related to Pythagorean hodograph (PH) space curves ,
see Section 2.3 of Chapter 7. In fact, the parametric representation of a polynomial PH
curve in 3—space can be generated by integrating the hodograph

X(t) = U(Q(t)) (L 0, O)T = (CZ(%‘HI%—(]%—Q;, 2(@1Q2+Q0Q3)a 2(Q1Q3—QOQ2) )T; (35)

cf. (19) and Eq.(10) of Chapter ?, where Q(t) is an arbitrary preimage curve in elliptic
3-space. For instance, the rational frame in Figure 13 has been generated from the
spherical motion shown in Figure 6. The resulting curves are automatically equipped
with rational frames, which can be obtained by combining the trajectory of the origin
with the spherical rational motion U(t), see (18). Recently, even more sophisticated
classes of rational space curves have been studied, providing a rational Frenet frame or a
rational rotation-minimizing frame, see [38,39,47].

Spatial rational motions can be used to generate sweeping surfaces. These surfaces
are generated by moving a fixed profile curve through 3-space, see [8, Preface (written
by P. Bézier), Fig 12] for an illustration. Rational sweeping surfaces have been studied
in [42,21]. The class of sweeping surfaces can be generalized by allowing simultaneous
changes of the moving profile curve. This leads to ‘generalized cylinders’, which have
been shown to be a useful tool for the interactive modelling of free—form shapes. Again,
the underlying rigid body motion can efficiently be described in rational (B-) spline form,
see [4].
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Based on rational spline techniques and the kinematical mapping, we have shown that
computational methods for spatial rigid body motions can be obtained by generalizing
the powerful techniques of Computer Aided Geometric Design. We conclude this chapter
by listing a few possible topics for further research.

7. CLOSURE

e (Generating optimal motions. An interesting problem for applications in robotics and
NC machining is the efficient generation of energetically or time-optimal motions,
taking the robot geometry into account, and their use for robot control. This may help
to reduce cycle times in manufacturing, and to increase the lifetime of the machinery.
A related problem is the optimal generation of paths for NC milling, cf. [28].

e Advanced CAD/CAM interfaces. Currently, the sophisticated geometry models of
CAD are mostly converted to piecewise linear or circular descriptions of tool paths
for Numerically Controlled (NC) machining. Here, due to the advancing processor
speed, it is now possible to use more advanced geometric models. First attempts in
this direction include the use of Pythagorean hodograph curves in NC milling (see
Chapter ?), and spline interpolation for robot motion planning [15].

o Sitmulation of machining. This is related to a third challenging problem. Advanced
methods for computer-aided simulation of manufacturing processes (e.g. milling) may
help to optimize these processes, and to check the quality of the results. For instance,
it would be interesting to be able to generate an accurate representation of the surface
produced by the cutter of a milling machine, in order to check the quality of the results.

As a promising direction for further research, the advanced techniques for describing in
Computer Aided Geometric Design should now be applied to problems from other areas,
such as computer—aided manufacturing and numerical simulation in scientific computing.
We are convinced that spatial rational spline motions are well suited for this forthcoming
task.
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of keyframes, 1

with motions, 19
interpolation algorithm, 18
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NC machining, 23
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unit, 1, 6

rational B-spline, 18
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robot controller, 21
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