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Summary. We describe an algorithm for fitting implicitly defined algebraic spline
curves to given planar data. By simultaneously approximating points and associ-
ated normal vectors, we obtain a method which is both computationally simple,
as the result is obtained by solving a system of linear equations, and geometrically
invariant. The initial result of the curve fitting procedure is improved by iteratively
adjusting the associated field of normal vectors. It is planned to generalize the
approach to algebraic spline surfaces.

1 Introduction

This paper is devoted to the reconstruction of planar curves from scattered
data. The (possibly noisy) data are assumed to be generated be taking sample
points of a certain planar object. We construct a planar curve that approx-
imately matches the shape of the data. Our approach is based on implicitly
defined algebraic spline curves. More precisely, the planar curve is obtained
as the zero contour of a bivariate real spline function.

The present study is intended to serve as a prototype for planned research
on methods for reconstructing algebraic spline surfaces from scattered data
in 3—space. However, the reconstruction of planar shapes from measurement
data is also an interesting subject in its own right (see [13] for references),
with various applications, e.g. in medical imaging.

Compared to the parametric representations, such as NURB (Non—-Uni-
form Rational B-spline, see [7,9]) curves and surfaces, implicitly defined
curves and surfaces offer several advantages:

e The curve and surface fitting procedures do not need the estimation of
auxiliary parameter values which are associated with the given data. In
the parametric case, by contrast, these parameters have a strong influence
to the resulting shape, and it may be difficult to generate appropriate
values, in particular for more complex shapes (see e.g. [9]).

e It is possible to bypass the initial polygonalization resp. triangulation step
that is required in many parametric curve and surface fitting procedures.

e They can be used to define planar domains resp. solids; the point mem-
bership can easily be decided by evaluating the sign of the generating
real function.
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e Relatively simple algorithms are available for computing the intersec-
tion(s) with straight lines, as this reduces to a one-dimensional root—
finding problem. This is particularly advantageous for the visualization
with the help of ray—tracing methods.

e Additional shape constraints can easily be added to the curve resp. sur-
face fitting procedure. For instance, the convexity of the resulting curve
resp. surface can be guaranteed by the convexity of the underlying real
function; see [11] for suitable linear convexity criteria. This leads to rel-
atively simple constrained optimization problems, as the feasible domain
is a convex set. Convexity criteria for truly parametric representations,
by contrast, are far more complicated, cf. [12].

On the other hand, implicitly defined curves and surfaces cause some extra-
neous difficulties which need to be taken care of.

e The visualization and evaluation of the surface needs special contour—
finding algorithms, such as ‘marching cubes’, see [9].

e In order to exchange data with commercial CAD systems, the implic-
itly defined curves and surfaces have to be converted into the industrial
NURBS standard, cf. [3].

e Approximation or interpolation schemes may produce algebraic curves
or surfaces which consist of several disconnected components. This needs
special treatment in order to avoid the resulting problems.

Methods for curve and surface fitting with implicitly defined algebraic curves
and surfaces have been discussed in an enormous number of publications,
and it is virtually impossible to give a complete survey. We list only a few
references which had a major influence to the present research.

Pratt [14], Taubin [15], and Bajaj et al. [2] describe methods for implicit
curve and surface fitting. The methods are based on the algebraic distance,
combined with suitable normalizations of the unknown coefficients. For in-
stance, Pratt’s ‘simple fit’ method [14] keeps the value of one of the coeffi-
cients, leading to a linear normalization constraint. The results, however, are
not geometrically invariant; they depend on the choice of the coordinates.
Taubin’s method [15] constrains the sum of the squared gradients at the data
sites. This leads to a geometrically invariant quadratic normalization.

The approximants are computed by solving constrained quadratic pro-
gramming problems (minimization of a quadratic objective function subject
to linear, resp. quadratic, constraints). In the case of quadratic constraints
(which are required in order to get geometrically invariant results), the solu-
tions are found by numerically solving generalized eigenvalue problems, i.e.,
by computing the eigenvector which is associated with the smallest eigenvalue
of a certain matrix. The dimension of the matrix is equal to the number of
unknown coefficients. Based on experimental evidence, Pratt’s and Taubin’s
methods have been compared by Umasuthan and Wallace [16].

In a number of publications, Bajaj and various co—authors [5,1] have devel-
oped implicit algebraic surfaces into a powerful tool for reconstructing curves
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and surfaces from measurement data (‘reverse engineering’). Their approach
focuses on the use of low—degree patches whose coefficients satisfy certain
sign conditions, in order to guarantee the desired topology of the result.

Recently, Werghi et al. [17] have developed an incremental framework,
incorporating geometric constraints (such as orthogonality), for fitting im-
plicitly defined geometric primitives, such as planes and quadrics.

The present paper describes a novel approximation technique for implic-
itly defined algebraic spline curves. By simultaneously approximating points
and associated normal vectors, we obtain a method which is both compu-
tationally simple (as the result is obtained by solving a system of linear
equations) and geometrically invariant. This will help to overcome some of
the limitations of the normalization—based algebraic curve fitting procedures.

In the remainder of this paper we describe an algorithm that fits an im-
plicitly defined algebraic spline curve to given planar data. More precisely,
consider a set of points

Pi:(pi,lpi,z)GRz; i=1,...,N; W

in the plane. The approximating curve is to be described as the zero contour
of a bivariate real function z = f(z1,22). The function f is chosen as a
piecewise polynomial function, leading to a approximating algebraic spline
curve.

The approximating curve is constructed in several steps, as follows. Firstly
we estimate normal vectors m; which are associated with the given data. In
the second step we fit an algebraic spline curve, matching both the data and
the associated normals. Using the additional normal vector information, we
are able to avoid the various normalizations that are used for fitting algebraic
curves and surfaces. Finally, in order to improve the results, one may update
the associated normals and iterate the curve fitting procedure.

2 Estimating associated normal vectors

As the first step of the curve fitting procedure, we generate unit normal
vectors

n; = (’I’Lz',l ni,z) € Sl; 1=1,.. .,N; (2)

from the unit circle S' = { z € R? | ||z]| = 1 } which are associated with the
given data (1). The estimation of normal vectors from measurement data is
a standard problem in scattered data approximation. In many applications,
the normal vectors can be generated directly from additional information
accompanying the data. For instance, if the points p; are generated from a
certain image, such as in Computer Tomography, then the normal vectors
could be chosen as the (normalized) gradients of the color function. If no
additional information is available, however, then the normal vectors have
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to be estimated directly from the data. We summarize the basic idea of the
method. More details can be found in [13], see also [8] for the 3D case.

In order to associate a unit normal vector n2; with one the points p;, we fit
a simple curve to the neighborhood of that point, see Figure 1 for a schematic
illustration.

Firstly we compute the associated local line of regression L;. It is found by
minimizing the weighted sum of squared distances of the points (p;);=1,...~
from the line L;. The weight function w = w(r) is chosen such that influ-
ence of a point p; to the line of regression L; decreases with its distance
r = ||pi — pjl| from p;. Possible choices include the characteristic function
w(r) = X[o,n) (i-e., taking only points p; with maximum distance h from p;
into account), or the exponential weight function w(r) = exp(—r?/H?), with
certain suitable constants h, H. The resulting optimization problem has a
quadratic objective function which minimized is subject to the quadratic
equality constraint ||m*||?2 = 1, where n* is the unit normal vector of L;. It
can be solved by computing the eigenvectors of a certain 2 x 2 matrix.

+ n quadratic regression curve n = q(¢)

~. local Cartesian coordinates
line of regression ~-~.

estimated normal n;

Fig. 1. Estimating the normal vector from the given data (shown as crosses).

In the second step we choose a new Cartesian coordinate system whose
axis of abscissae is parallel to L;, and fit a local quadratic regression curve to
the data. This curve is the graph of a quadratic polynomial with respect to the
new Cartesian system. Its coefficients are computed minimizing the weighted
sum of squared residuals, leading to a 3 x 3 system of linear equations.

The direction £mn; of the unit normal vector which is associated with p;
is then chosen such that it is parallel to the normal of the quadratic polyno-
mial, evaluated at the abscissa of p;. In order to get useful results, however,
we have to guarantee that neighboring normal vectors have the same orien-
tation. That is, if two points p;, p; are relatively close together, then the
inner product m; - n; of the associated normal vectors is expected to be pos-
itive. In order to choose the orientation of the normals, one could compute
the minimum spanning tree of the data and use the resulting neighborhood
information, see [13]. As a cheaper alternative, one may simply choose an ap-
propriate rectangular grid, and select — for each of the resulting quadrangular
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cells — a representative of the points which are contained in it (if such points
exist). The orientation of the normals that are associated with the represen-
tatives is chosen according to the neighborhood structure of the grid. Then,
the orientation of the remaining normals is chosen according to that of the
representatives. Clearly, the success of this simple method depends on the
appropriate specification of the grid size, requiring some user interaction.

Two examples are shown in Figure 2. We have sampled 100 points from
a planar shape and added some noise to it, with two different levels. The
plots show the data (p;)i=1,..,n, along with the estimated normal vectors
(n:)i=1,....n- The normal vectors have been estimated by considering — for
each point — the 10 nearest neighbors, and fitting the line of regression and
a quadratic regression curve to them.

3 Implicit algebraic tensor—product spline curves

The implicitly defined algebraic spline curve is described by a tensor—product
spline function of (bi-) degree d (d > 2). The segments of the resulting
spline are algebraic curves of order 2d. The use of tensor—product spline
offers several advantages, including simple implementation, simple conditions
for global smoothness, simple evaluation, sufficient flexibility and refinability
(e.g. using hierarchical B-spline representations, see [4])

The approximating curve is described as the zero contour f(z,y) = 0 of
the tensor—product spline function

fle,y)= > Mi(z) N;(y) cij 3)
(ij)€T

with the real coefficients (control points) ¢; ;, where Z is a certain index
set, see below. The basis functions (M;(z))i=1..m and (N;(y);=1..n) are B-
splines of degree d with respect to the knot sequences X = (&;)i=1..m+1 and
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Fig. 3. The domain D of the tensor—product spline
function (3) consists of all cells that contain data, and
the neighbouring cells (within the enlarged bounding
box of the data, shown as dashed lines).

Y = (n)j=1..n+1, see [6,9]. We choose the first and last d + 1 knots of X
resp. )V as the abscissas resp. ordinates of the slightly enlarged (by blowing
it up) bounding box of the data (px)g=1,....~. The remaining inner knots are
chosen equidistant.

The two knot sequences define a partition of the (slightly enlarged) bound-
ing box [&1,&mtd+1] X [N, Mntd+1] into rectangular cells. Clearly, not all of
these cells necessarily contain data points. We choose the domain D of the
tensor—product spline function (3) to be the union of all cells that contain
data, and of the neighboring cells, cf. Figure 3. The index set Z in (3) is
chosen such that the summation includes all products M;(z) N;(y) that do
not vanish on D,

IT={(,j)|3ke{l,....N},re{l,...,m},se{l,...,n}:
Mr(pk,l) Ns(pk,2) 7é 0 A max{|i—r|,|j _S|} S ]-}

Clearly, the domain D of the tensor—product spline function (3) depends on
the choice of the Cartesian coordinate system. An geometrically invariant
choice could be obtained by fitting a line of regression (which serves as one
of the coordinate axes) to all data.

In order to keep the algebraic order as low as possible (if this is desired),
it would be more appropriate to chose a bivariate spline function of total de-
gree d (e.g., defined with respect to a union of triangles, such as Powell-Sabin
spline or simplex spline, see [9]), rather than a tensor—product one. Within
the tensor—product setting, a lower algebraic degree could be guaranteed by
introducing additional side—conditions. For instance, a biquadratic tensor—
product spline, along with the linear constraints fr,, = 0 and f;4, = 0, gives
C! spline curves of algebraic order 2, i.e., C' conic splines. Adding these
constraints, however, leads to a highly redundant representation.

The approximation method which is described in the next section can be
applied to any implicit algebraic spline curve, not only to curves in tensor—

(4)
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product representation. Using tensor—products we obtain a method which is
computationally simple, but whose results depend on the choice of the system
of coordinates (unless we choose the coordinates with the help of the line of
regression, as outlined earlier). This dependency, however, is caused only
by the choice of the space of functions, not by the approximation method.
For instance, applying the approximation method to bivariate polynomials
of total degree d gives geometrically invariant results.

4 Fitting curves to points with associated normals

Let ¢ = (ci,j)(i,j)ez be the vector obtained by gathering all B-spline coeffi-
cients (control points) of the approximating algebraic spline curve, in a suit-
able ordering. Its components will be computed by minimizing a quadratic
objective function F' = F'(c¢), which is formed as a certain linear combination
of four terms.

4.1 Approximating the data

The first two terms deal with the data (p;)i=1,...,~ and with the associated
normal vectors (7;);=1,....n. The given data are approximated by minimizing
the sum of the squared ‘algebraic distances’ (see [14,15]),

N
L(c) = Z [ F(pi1,pi2) I ()

The sum L is a homogeneous quadratic form of the unknown control points c.
Hence, it is minimized by the null vector ¢; ; = 0, leading to the tensor—
product spline function f(z,y) = 0. In order to get results which are more
useful, one has to introduce a normalization. Various normalizations have
been described in the literature [2,14,15], most of them based on a suitable
norm in the coefficient space. Our approach is based on the simultaneous
approximation of the data and the associated normal vectors, by minimizing
— in addition to L — the sum

N
M(c) = Z | V£, piz2) — ||2
N (6)
= Z (fo (i1, pi2) — ni,1)2 + (fy(pi,1,pi,2) - ni,2)2-
i=1

That is, the gradients Vf = (f;, fy) of the tensor—product spline function
f(z,y) at the given data p; are to match the estimated normal vectors m;.
Consequently, as the given normals n2; are unit vectors, the algebraic distances
in (5) can be expected to approximate the real distances.
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4.2 Tension terms

Although the minimization of weighted linear combination of L and G leads to
good results in many cases, it may produce approximating spline curves that
split into several disconnected components. There are several possibilities to
address this well-known problem of algebraic curve and surface fitting. For
instance, based on the signs of the coefficients, one may derive criteria which
guarantee the desired topology of the result, see [5].

As we wish to compute the solution by solving a system of linear equa-
tions, we use the simpler approach of adding suitable ‘tension terms’ that pull
the approximating curve towards a simpler shape. If the the tension terms
have a sufficiently strong influence (which is governed by certain weights),
then the approximating curve has the desired topology.

A global tension term is given by the quadratic functional

Gle) = / / [ 42+ £ de dy ()
D

which measures the deviation of f(z,y) from a linear function. Hence, by
increasing the influence of this tension term, the resulting spline curve gets
closer to a straight line.

In addition to the global tension term we have tested a data—dependent
tension term also. It is based on the following simple observation.

Lemma 1. Consider a tensor—product polynomial p(z,y). If the quadratic
functional (with respect to the coefficients of the polynomial)

. 2
o J
Q= > [( ) (—) p(w,y)] dz dy ®)
/]/2 iec Oz Oy
vanishes, with the indez set

L={(G,j)€Zi|j>2V (j=1Ai>1)}, (9)

and py(x,y) # 0 holds, then the level curves p(z,y) = d are graphs of poly-
nomials y = qq(x).

Proof. If a tensor—product polynomial p(z,y) satisfies

(%)i (%)jp(x,y) =0 V(,j)eL (10)

and py(z,y) # 0, then it has the form p(x,y) = C y+q¢(z) with areal constant
C # 0. Consequently, the level curves p(z,y) = d are simply graphs of the
polynomials y = (d — g(z))/C. The linear equations (10) are equivalent to
the quadratic equation @) = 0. ]
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Fig. 4. Generating the data—dependent tension term D(c¢). The data with the as-
sociated normal vectors (a) and the set A of cells with the normals n. (b).

By replacing the partial derivatives in (8) with directional derivatives with
respect two perpendicular unit vectors, one obtains a condition for the level
curves to be graphs of polynomials with respect to another system of co-
ordinates. We obtain the data—dependent tension term L by collecting the
left-hand sides of (8), and using suitable directional derivatives, whose direc-
tions depend on the data.

More precisely, let A be the set of all cells (belonging to the grid defined
by the knot sequences X and Y of the spline function) which contain at least
one of the data (p;)i=1,... v- The data—dependent tension term is given by

p@=% [[ ¥ [(%%)i(aic)jﬂw,y)rda:dyzo, (1)

CeA 4 (i,j)eL ¢

where n. is the normalized average of the associated normal vectors of the
points in C, and n- obtained by a clockwise rotation of /2.

An example is presented in Figure 4. Its left part (a) shows the data
(pi)i=1,...,n and the associated normals (1;);=1,....n. The right figure (b) vi-
sualizes the domain D of the tensor—product spline function, the cells A that
contain data (marked in grey), and the associated normal vectors n. (shown
as arrows) which are used for generating D.

The tension term D measures — for each cell C' — the deviation of the
algebraic curves f(x,y) = d from graphs of polynomials with respect to an
adapted system of Cartesian coordinates. By minimizing it one may obtain
the desired topology of the solution, without getting results which are ‘too
flat’. An example is given below.
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4.3 Computing the solution

The approximating implicit spline curve is found by minimizing the weighted
linear combination

F(c) = L(¢) + w1 M(e) + w2 G(¢) + w3 D(¢) — Min, (12)

see (5), (6), (7) and (11), with certain non—negative weights w;, wa, and ws.
As this leads to a quadratic objective function of the unknown control points
¢ = (¢i,j)(i,j)ez, the solution can be found by solving the sparse linear system
of equations

0

8Ci,j

F(C) =0, (Z,]) €I, (13)

with the help of appropriate methods from numerical linear algebra. Alterna-
tively, one may also compute the solution of (12) by generating an overcon-
strained system of linear equations, and computing a least-squares solution
to it using QU factorization, see e.g. [6].

The weight w; controls the influence of the estimated normal vectors n;
to the resulting curve. The weights ws and w3 act as tension parameters, see
Section 4.5 for an example.

As the main benefit from the simultaneous approximation of points p;
and normal vectors m;, the approximating spline curve is found by solving a
system of linear equations. The required computations have the complexity
O(h?) (without taking the sparsity into account), where h = |Z| is the number
of coefficients.

The traditional, normalization-based methods [14,15], by contrast, gen-
erate the solution of the curve fitting problem by solving a generalized eigen-
value problem, requiring iterative numerical procedures for computing the
result. According to [15], the complexity is O(h®).

4.4 Existence and uniqueness

Under certain mild assumptions, the problem (12) can easily be shown to be
uniquely solvable.

Proposition 1. If the weights w1 and we are positive, and ws # 0, then
the quadratic optimization problem (12) has a unique solution. Consequently,
the rank of the square coefficient matriz of the linear system (13) equals the
number of coefficients |Z|.

Proof. Tt is easy to see that the quadratic functionals (5), (6), (7) and (11)
are convex. That is,

QA + (1-1)c?) < A QM)+ (1-)) Q(c?), 0< A< 1, (14)
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holds for all of them, @ € {L, N,G, D}. However, they are not strictly convex,
as both sides of (14) may be equal. This case is characterized by certain
conditions to the difference vector of the coefficients, as follows.

Consider a tensor—product spline function g(z,y) with the coefficients

e — 2 = (cgl) — c§2))i:1,,,,,N, where both sides of (14) are assumed to be

equal. If @ = L then these coefficients represent a function f(z,y) such that
the associated zero contour interpolates all data, i.e.

g(pz"]_,pi,2) =0 holds for i= ]., e .,N. (15)

If @ = N then the difference coefficients represent a function f(z,y) whose
gradient vanishes at all data, i.e.

Vg(pi,l,p,-,g) =0 holds for = 1, ceey N. (16)
Finally, if @ = G then they simply describe a linear function g(z,y), i.e.,

922 (T, Y) = Guy(2,y) = gyy(x,y) =0 holds for (z,y) € D. (17)

Thus, the linear combination (12) with positive coefficients wq, wa (and non—
negative ws) is even strictly convex, as only the zero function (¢t —c¢(?) = 0)
simultaneously fulfills the three conditions (15), (16), (17). This proves the
assertion. []

Note that the tension term G is the only part of the objective function (12)
that acts on all cells of the domain D. The other parts act only on cells which
contain data. Consequently, the choice wo = 0 will always produce a singular
system (13), if at least one of the products M;(x) N;(y) vanishes at all data
(2,9) = (pi,1,pi,2). This may happen very easily, as the domain of the spline
function f(xz,y) consists of all cells containing data, and the neighboring cells.

4.5 Examples

As a first example, we approximate the two sets of data shown in Figure 2 by
implicit algebraic tensor—product spline curves of degree d = 2. We choose
knot vectors which generate a grid of 3 x 2 cells, leading to |Z| = 20 unknown
B-spline coeflicients c; ;. The weights of the objective function are chosen as
w1 = 1, we = ws = 0.001. The resulting curves are shown in Figure 5.

In order to compare these results with the ones described in the next
section, we provide the ¢; (total error), ¢ (least—squares), and £, (maximum
error) norm of the residual errors

R= (Ri)izl,...,N with R; = inf{ llp; — z|| | f(zl,ZQ) =0 }, (18)

measuring the orthogonal distances from the data p; to the approximating
curve. The orthogonal distances have been generated by computing the foot-
points of the data with the help of Newton—-Raphson iterations. The curves
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Fig. 5. Approximation of
the data from Figure 2
by algebraic tensor—product
spline curves of degree 2.

from Figure 5 give the following results, where the residuals R; resp. R, refer
to the example on the left— resp. right-hand side:

|1 Re]l1 = 5.286, [|Rill2 = 0.623, ||Ril|co = 0.204,

19
[|R-||1 = 5.959, [|R.||2 = 0.732, ||R;||c = 0.178. (19)

The next figure visualizes the influence of the two different tension terms.
Here, the knot vectors generate a grid of 6 x 4 cells, see Figure 4 for the
resulting domain D. This leads to |Z| = 45 unknown B-spline coefficients ¢; ;.
The curves in Figures 6a resp. b have been generated by adding global resp.
data—dependent tension. We chose the weights of the objective function such
that the ratios of the approximation and tension parts

L(c) + w1 M(c)
wo G(C) + ws D(C)

(20)

have the same values (= 1.2) for both curves. Thus, both tension terms have
approximately the same influence to the result. The data—dependent tension
term gives the better result, as the global tension term tends to straighten
out the resulting curve.

Clearly, as a slight modification of the method, one could also apply ten-
sion locally, to specific parts of the curve only. This could be achieved simply
by using weight functions we = we(2x,y) and ws = ws(x,y) which depend on
the coordinates = and y.

5 Updating the objective function

By appropriately updating the objective function, the result of the curve
fitting procedure can be improved. This leads to an iterative curve fitting
procedure.
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Fig. 6. Comparison of the tension terms. Approximating curve with global ten-
sion (a) and with data—dependent tension (b). Both tension terms have approxi-
mately the same influence.

5.1 Weighted least—squares

Clearly, the algebraic distances (5) do not represent the real distances between
the data and the approximating spline curve. In order to obtain a better
approximation, it is a standard approach in implicit curve and surface fitting
to use — instead of (5) — the weighted least—squares sum

N

L*(e) =Y [wi f(pir,pig) |- (21)

i=1
with certain positive weights w;, leading to the modified optimization problem

F(c) =L*(¢) + w1 M(c) + w2 G(c) + w3 D(¢) — Min. (22)
Ideally, the weights would have the values

1
~VF i pi)ll

where f is the solution to (22). Then, the weighted least-squares sum (21)
would be a good approximation of the squared Euclidean distances, see [15].
The following ‘reweight procedure’ is described in [15]; it is similar in spirit
to various related methods of weighted least—squares.

(23)

Wi

(Tterative fitting procedure)

1. Compute an initial solution f(l)(:c,y) by choosing the weights w; = 1,
i=1,...,N.Let j =1.

2. Choose the weights w; = 1/||V £ (p; 1,pi1)|| and compute the new solu-
tion U+ of (22).
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3. If a certain termination criterion is satisfied (e.g., the improvement of
Euclidean distances and/or the change of weights stays below a certain
limit) then stop, f (+1) is the approximate solution. Otherwise increase
j by 1 and continue with Step 2.

In the original algorithm [15], the computation of the next solution in Step 1
resp. 2 requires the solution of a generalized eigenvalue problem. By simul-
taneously approximating points and associated normal vectors, we have to
solve a system of linear equations instead.

5.2 Adjusting the normal vectors

A similar iterative procedure can be applied to the normal vectors (1;)i=1,... N
which are associated with the given data. It is analogous to the method of
‘parameter correction’ for parametric curve and surface fitting, see [9, Section
4.4.3]. There, the new parameters of a point are chosen according to the
location of its nearest neighbor on the approximating curve resp. surface;
they are then used for computing an improved solution.

Similarly, we may use the gradients of the first approximation at the
data p; in order to adjust the normal vectors n;. Clearly, the lengths of these
vectors will be non—uniform in general. In order to avoid contraction to a
sequence of null vectors, we scale them such that the sum of the squared
lengths equals v/N,

N
> lnall* = N (24)
i=0

This leads to the following modified Step 2 of the iterative fitting procedure

from the previous section:

2'. Choose the normal vectors according to

N )
n; = VN VD (pii,pig); i=1,...,N; (25)

N
kE IV (pr,1, pr2)II?
=1

and continue with the original Step 2.

Clearly, also the termination criterion in Step 3 has to be modified, by taking
the change of the associated normal vectors into account.
One may identify the normal vectors
n" = (ni)i=1,..,N (26)

)

with a single vector n* € R . The vectors satisfying (24) form the sphere
VN $?N—1 with radius v/N and center at the origin. The adjustment of the
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n” (old)

n* (update) |

Sphere VN §2V-1

(VF9D (pin,pi2))izt,..n

R2N

O origin O
Fig. 7. Geometric interpretation of the normal vector adjustment. The arrows ‘<’
represent the value of the normal vector part M(c) of the objective function.

normal vectors can be interpreted as follows. The new normals n* are found
by intersecting the ray

X (VD Dir,pi2))ier,.. N, AER, (27)

with the sphere, see Figure 7. The normal vector part M (c) of the objective
function measures the distance of the gradients (which are also considered as
apoint in R*V) and the (previous) normals n*. Consequently, the adjustment
of the normal vectors (25) always leads to a smaller value of M (c), as the
new normals n* have the minimum possible distance from the gradients.

5.3 Examples

The modified (by using Step 2’ instead of Step 2) iterative curve fitting pro-
cedure has been applied to the data of the previous examples, see Figures 2
and 5. This leads to the normal vectors (n;);=1,...,n and the approximating
curves which are shown in Figures 8 and 9. These result have been obtained
after 12 iterations of the fitting procedure. In order to facilitate the compar-
ison, the initial curves have been drawn in grey, along with the result after
12 steps.

Again we we provide the ¢; (total error), 2 (least—squares), and £, (max-
imum error) norm of the residual errors, compare with the initial values (19):

| Rullx = 2.807, [[Rll2 = 0.381, ||R[lc = 0.155,

28
1R, |1 = 4.613, [|Ry |2 = 0.555, || Re|jec = 0.133. (28)

According to our numerical experience, the iterative adjustment of the
normal vectors leads only to relatively small changes in the shape of the
curves. Consequently, the initial estimates n; seem to be fairly good. Also, the
biggest improvement of the approximation errors is often achieved in the few
first steps of the iterative fitting procedure, and the effects of the remaining
steps are rather small. Figure 10 shows the £ norms of the residual error,
and the angle between new and old normal vector n* € R?V | for each of the
12 iteration steps of the previous example.
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—
—_—
—
—

2

L2 error

0.7

left example

right example (noisy data) 10.0

Fig. 8. Normal vectors ob-
tained after 12 steps of
the modified iterative curve
fitting procedure, compare
with the initial values in
Figure 2.

Fig. 9. Approximating
curves obtained after 12
steps of the modified itera-
tive curve fitting procedure.
The initial curves (see also
Figure 5) are shown in grey.

angle (in degrees)

0

1 6

Fig. 10. The ¢> norm of the residual errors (left) and the angle (in degrees) between
new and old normal vector(s) n* € R*" for the 12 iteration steps.

1é iterations

t 0
12 iterations 1 6
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Concluding remarks

We have described a novel technique for fitting implicitly defined algebraic
spline curves to planar scattered data. By simultaneously approximating
points and associated normal vectors, which are estimated from the data,
one obtains a method which is both computationally simple, as the result is
obtained by solving a system of linear equations, and geometrically invariant,
as no auxiliary normalization of the spline coefficients is needed. Weighted
least—squares and an iterative adjustment of the normal vectors have been
used in order to improve the initial result.

As demonstrated in this paper, both the problems of implicit (algebraic)
and parametric curve fitting can be dealt with by solving certain sequences of
systems of linear equations. The fitting of parametric curves needs the esti-
mation of auxiliary parameter values, which can then be iteratively improved
via parameter correction. Analogously, curve fitting with implicit representa-
tions requires auxiliary normal vectors, which can then be adjusted, in order
to obtain better results.

Also, the method presented in this paper can be seen as a contribution
to methods for approximating dual data. That is, a curve resp. surface is to
be generated by approximating tangents resp. tangent planes, rather than
points, cf. [10]. Our curve fitting scheme deals with ‘mixed’ data, which are
obtained by combining point and tangent information.

The success of the curve fitting scheme depends on the robustness of the
method which is used for estimating the normal vectors from the data. The
sensitivity of the result with respect to errors contained in the data should
therefore be analyzed.

Future research will focus on implicitly defined algebraic spline surface.
One the one hand, we plan to explore the use of low—degree spline surfaces,
such as quadrics and cubicoids, for surface fitting applications. On the other
hand, surfaces of higher order will be used in order for more complex objects,
with potential applications in reverse engineering.

References

1. Bajaj, C.L. (2000) Publications, available at www.ticam.utexas.edu/CCV/
papers/fhighlights.html.

2. Bajaj, C.L.; Ihm, I.; Warren, J. (1993) Higher-Order Interpolation and Least—
Squares approximation Using Implicit Algebraic Surfaces. ACM Transactions
on Graphics 12, 327-347.

3. Bajaj, C.L.; Xu, G. (1997) Spline approximations of real algebraic surfaces. J.
Symb. Comput. 23, 315-333

4. Forsey, D.; Bartels, R. (1995) Surface Fitting with Hierarchical Splines, ACM
Transactions on Graphics 14, 134-161.

5. Bernardini, F.; Bajaj, C.L.; Chen, J.; Schikore, D.R. (1999) Automatic Recon-
struction of 3D CAD Models from Digital Scans. Int. J. Comp. Geom. Appl. 9,
327-370.



18

10.

11.

12.

13.

14.

15.

16.

17.

Bert Jiittler

Boehm, W.; Prautzsch, H (1993) Numerical methods. AK Peters, Wellesley
(Mass.), and Vieweg, Braunschweig.

Farin, G. (1995) NURB curves and surfaces. AK Peters, Wellesley (Mass.).
Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. (1992) Sur-
face reconstruction from unorganized points. Computer Graphics 26, 71-78.
Hoschek, J.; Lasser, D. (1993) Fundamentals of Computer Aided Geometric
Design. AK Peters, Wellesley (Mass.).

Hoschek, J.; Schwanecke, U. (1997) Interpolation and approximation with ruled
surfaces. In: Cripps, R. (ed.) The Mathematics of Surfaces VIII, Information
Geometers, Winchester, 213—232.

Jittler, B. (1997) Surface fitting using convex tensor-product splines. J. Comp.
Appl. Math. 84, 23-44.

Koras, G.D.; Kaklis, P.D. (1999), Convexity conditions for parametric tensor—
product B-spline surfaces. Adv. Comput. Math. 10, 291-309.

Lee, I.-K. (2000), Curve reconstruction from unorganized points. Comput.
Aided Geom. Des. 17, 161-177.

Pratt, V. (1987) Direct Least—-Squares Fitting of Algebraic Surfaces. ACM
Computer Graphics 21 (Siggraph’87), 145-152.

Taubin, R. (1991) Estimation of Planar Curves, Surfaces, and Nonplanar Space
Curves Defined by Implicit Equations with Applications to Edge and Range Im-
age Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 13,
1115-1138.

Umasuthan, M.; Wallace, A.M. (1994) A comparative analysis of algorithms for
fitting planar curves and surfaces defined by implicit polynomials. In: Fisher,
R.B. (ed.) Design and applications of Curves and Surfaces (Mathematics of
Surfaces V). Clarendon Press, Oxford, 495-514.

Werghi, N; Fisher, R.; Robertson, C.; Ashbrook, A. (1999) Object recon-
struction by incorporating geometric constraints in reverse engineering. Comp.
Aided Des. 31, 363-399.



