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Abstract

This paper proposes a simple approach to the affine
motion interpolation problem, where an affine spline
motion is generated that interpolates a given se-
quence of affine keyframes and satisfies approxi-
mately rigidity constraints and certain optimization
criteria. An affine spline motion is first generated so
as to interpolate the given keyframes; after that, it
is progressively refined via knot insertion and degree
elevation into an optimal affine motion by an itera-
tive optimization procedure.

Keywords: Affine spline motion, keyframe anima-
tion, curve, knot insertion, degree elevation, rigidity,
energy optimization.

1 Introduction

Motion interpolation is an important subject of re-
search in computer graphics and animation. In par-
ticular, unit quaternions play an important role in de-
veloping efficient algorithms for keyframe animation
of a rigid 3D object [1, 10, 14, 15], where the posi-
tions and orientations of the moving object are in-
terpolated smoothly. In this paper, we consider a
slightly more general problem where the moving ob-
ject may change its shape under affine transforma-
tions.

Shoemake and Duff [16] applied the polar decom-
position to the affine motion problem. Given a se-
quence of affine transformations

���
with ���	��
 �������

, ( ���������	������� ), the polar decomposition computes��� ��� �� !�
, where � �

is a rigid body motion matrix
and

 !�
is a symmetric positive definite stretch ma-

trix – the matrix � �
is computed so that the Frobe-

nius matrix norm " � ��# � � " is minimized. The
sequence $�� �&%

is interpolated by a rigid body mo-
tion �'
)(  and the other sequence $  �*% is interpo-
lated by a stretch motion

 
)(  . The affine motion

� 
+(  is then generated by composing the two parts:� 
+(  �,�'
)( � 
)(  .
The polar decomposition is mathematically ele-

gant. However, there is a drawback in applying the
decomposition technique to optimization problems –
it is not easy to coordinate the interaction between
the two different components: �'
+(  and

 
)(  . More-
over, the construction of an exact rigid body motion
�'
)(  requires relatively high degrees [9]. For ex-
ample, we need to use splines of degree six so as to
guarantee the -/. -continuity of �'
)(  . A composi-
tion with the stretch matrix

 
+(  will further raise the
degree of the affine motion matrix

� 
)(  to nine!

Alternatively, one may use non–rational motions,
based on unit quaternion curves and slerps [10, 15].
However, this will result in non-rational point trajec-
tories which are difficult to deal with. In particular,
the slerp-based unit quaternion curves do not satisfy
the knot insertion property, which has been consid-
ered as a serious drawback of these curves. As a con-
sequence, - . motions are difficult to construct [13].

In this paper, we take a simple approach to the
affine spline motion and interpolate each element of
affine keyframe

� �
by a spline function. Note that cu-

bic splines then guarantee the -0. -continuity of
� 
)( 

in this case. According to Shoemake and Duff [16],
the results of this approach are “usually unsatisfac-
tory” (quoted from their Introduction). We show
that these potential problems can be easily eliminated
by applying certain geometric constraints and other
optimization criteria to the design of affine motion
curves. We start with an affine spline motion that
satisfies only the interpolation condition. It is then
progressively refined via knot insertion and degree
elevation into an optimal affine motion.

Using this approach we reduce the affine motion
design problem to a curve fairing problem in a lin-
ear 12-dimensional space, where the fairness of the
curve in 12 spaces corresponds to rigidity and fair-
ness of the affine motion in 3–space. The rigid-



ity measures, however, correspond to non–quadratic
fairness measures, which have to be dealt with nu-
merically. Thus, in order to speed up the optimiza-
tion, we need to construct a good initial solution.

In a recent work, Ma et al. [12] applied a simi-
lar technique to the rigid body motion. We extend
the result to more general affine motions and also to
more general energy-minimization criteria, including
rigidity constraints.

There are many interesting applications of affine
spline motions – some are discussed in Section 2.3.

The rest of this paper is organized as follows. In
Section 2, we briefly review the basic theory of affine
spline motion and interpolation. Section 3 consid-
ers the objective functions that can represent rigidity
constraints and energy-minimization criteria. Sec-
tion 4 describes methods for solving the optimization
problem. Section 5 demonstrates some illustrative
examples of affine motion interpolation. Finally, in
Section 6, we conclude this paper.

2 Affine Spline Motion and In-
terpolation

In this section, we review the basic theory of affine
spline motion and techniques for interpolating a se-
quence of affine keyframes.

2.1 Affine spline motion

An affine mapping ��������� is described by

x ��	�v 
 �
x � (1)

The vector �v represents the translation, specifying the
image of the origin. The matrix

��� ���� � will be
called the ‘rotational’ part. If the matrix

�
is nonsin-

gular, then the mapping is one–to–one.
An affine spline motion is a time–dependent affine

mapping
x �� �v 
)(  
 � 
+(  x � (2)

where the elements of both �v 
)(  and
� 
+(  are spline

functions. The translational part is given by the tra-
jectory of the origin,

�v 
)(  �
��
������� � 
)(  �v � � (3)

The ‘rotational’ part is described by a time–
dependent ����� matrix

� 
)(  �
��
������� � 
)( *� � � (4)

Here, both the translational and the ‘rotational’ part
are represented in B-spline form, with control points
�v � and control matrices (‘affine control positions’)� �

. The basis functions � � 
)(  are the B-splines, de-
fined over a suitable knot sequence. For details, see
Farin [4] or any other suitable textbook.

Then, the trajectory of a point x in the moving co-
ordinate system is a spline curve

�x 
)(  �
��
����� � � 
+(  
��v � 
 � �

x
��

(5)

it has the control points �v � 
 ���
x.

If an object undergoes an affine spline motion, it
will generally be subject to scaling and distortion.
Note that an affine spline motion is an exact rigid
body motion (that is, free of scaling and distortion) if
and only if the matrix

�
is a constant rotation matrix,

see [8] for a proof.

2.2 Affine spline interpolation

We assume that a sequence of affine keyframes is
given, each described by an affine mapping

x ��	�v �� 
 � �� x � � � � �	�	����� � � (6)

Each mapping specifies a given affine position of the
moving object.

We should assign suitable parameter values ( � (es-
timates of the time) to the frames. This work is usu-
ally stated as finding a knot sequence in spline inter-
polation problem. There are several techniques for
finding a knot sequence of the frames as listed in
Hoschek [5]. Geometrically speaking, the speed and
acceleration of an affine motion should be adjusted to
the distribution of keyframes, which is the analogue
of -/. parameterization of a motion curve. Hence,
the knot spacing should be made to be proportional
to the distances of the frames and the differences of
the orientations of the adjacent positions as described
in Jüttler [7].

It has been observed that chord length and cen-
tripetal parameterization usually produces better re-
sults than uniform knot spacing, although they re-
quire more computation time. Thus, uniform and
centripetal knot spacing methods are used together
for our examples since uniform knot spacing gener-
ally works well in simple smooth motions, whereas
centripetal knot spacing produces better results in
abruptly changing motions.

The interpolation conditions

�v 
+( �  ���v �� and
� 
+( �  � � �� � � � �����	����� � �

(7)



that is,

�v �� �
��

� ��� � � 
+( �  �v� and
� �� �

��
� ��� � � 
+( � �� � � (8)

lead to a system of linear equations for the control
points �v � and the control matrices

� � of the affine
spline motion. The solution of this linear system
can be effectively approximated by calculating the
pseudo-inverse of a matrix containing spline basis
function values, which minimizes the approximation
error.

In the special case of uniform cubic B-spline func-
tion, the basis function matrix becomes so simple
that the solution of linear system can be easily ob-
tained. Even when the knot sequence of given
frames is non-uniform or the motion curves has com-
plex shapes, -0. -continuous cubic spline interpola-
tory motion curves can be easily obtained via direct
linear-system solving. Recalling that every B-spline
curve can be represented as a piecewise Bézier curve,
the relationship between given frames and the un-
known control points and matrices can be easily de-
rived as the linear system with a tridiagonal matrix.
For details, refer to Farin [4]. This tridiagonal lin-
ear system is most effectively solved by LU decom-
position of the matrix and this direct method runs
faster than any other iterative methods. Although
this technique somewhat depends on the end condi-
tion for continuity, the resulting solution is suitable
for the initial solution of the optimization step to be
discussed in Section 4.

2.3 Applications of affine spline motions

The affine spline motions can be used for the follow-
ing applications.

1. Affine morphing (smooth transition between
affine positions). Given several affine copies of
a moving object (such as a profile curve or an
ellipsoid), find an affine motion which ‘morphs’
the affine copies into each other. Here the mo-
tion is to minimize the distortion of the object.

2. Sweep surface design. The affine motion has
applications to sweep surface design (general-
ized sweeping). In the past, rational spline mo-
tions are used in designing rational sweep sur-
faces [3, 6, 8]. For example, a sweep surface
was defined under an affine transformation, but
given in a decomposed form:

 
�� ��(  � �'
+( � 
+(  - 
��  �
where - 
��  is a rational profile curve. By com-
bining the two components �'
)(  and

 
)(  into

a single term for an affine spline motion:

 
�� � (  � � 
)(  - 
��  �
we can reduce the degree of the sweep surface.

3. Keyframe interpolation and approximation.
Given several copies of a rigid objects
(keyframes), find an affine motion which in-
terpolates them, generating a motion which is
close to a rigid body motion. Although the ex-
isting exact interpolation techniques with ratio-
nal spline motions are fairly powerful, the use
of affine spline motions may offer some advan-
tages. For instance the geometric nature of the
trajectories is much simpler, which may pos-
sibly lead to simpler algorithms for generating
sweep surfaces and envelopes. Using a suit-
able orthonormalization procedure (cf.[16]), the
affine motion can always be mapped onto a rigid
body motion.

4. Motion fitting. Sometimes, a motion is to be
found by approximating a sequence of given
keyframes. For example, in virtual reality or
medical applications, we need to reconstruct the
motion of human joints for improving the de-
sign of prostheses. In this situation, both the de-
composition technique and the use of exact rigid
body motions via quaternion curves will lead
to non–linear systems of equations, which can
only be dealt by numerical techniques. Affine
spline motions may help to circumvent these
difficulties.

5. Motion design. There are possibly even fur-
ther applications, such as the design of energy–
minimizing motions, generalizing the optimal-
ity properties of cubic splines to rigid body mo-
tions.

3 The Objective Functions

We consider how to formulate objective functions
that are useful for specifying geometric constraints
and other optimization criteria.

3.1 Rigidity constraints

In order to generate the rigidity part of the objective
function, we pick a set of test vectors

�q � � � � �����	�	�	��� � (9)

For instance, one may choose these vectors to be the
three unit vectors of the coordinate axes. The choice



of the test vectors should reflect the geometry of the
moving object. The vectors should span the whole
3–space ��� .

The rigidity part of the objective function is chosen
as

� �
���
�
�
�
� ���

�
� ���
		 ( �q �

� � 
+(  � � 
)(  �q �� . 	 (
(10)

with certain non–negative weights �
�
� � . The objec-

tive function
�

is a non–negative definite polynomial
function of degree 4 of the coefficient matrices

�/�
.

The objective function is invariant with respect
to orthogonal transformations of the fixed system
(i.e. the world coordinates). However, it is not invari-
ant under more general transformations of the mov-
ing system. The derivation of an invariant rigidity
measure, which is also suitable for numerical min-
imization, is a challenging subject for further re-
search.

Alternatively, one may also consider an invariant
rigidity measure based on second derivatives,

� � �
� �
�
�
�
� ���

�
� ���
	 .	 ( . �q �

� � 
+(  � � 
)(  �q � � . 	 ( �
(11)

Ideally, for exact rigid body motions, both rigidity
measures are equal to zero.

3.2 Other conditions

There are various possibilities to include other parts
in the objective function. For instance, one may min-
imize the energy of the trajectories of several test
points p

�
,

� � � �
���
��� ����� 	 .	 ( .�� � 
+(

 
 � 
)(  p
��� ��� . 	 ( � (12)

again with suitable positive weights (“masses”) � � .
By minimizing these energies, along with the rigidity
part (10), one may obtain an analogue of cubic spline
for a rigid body, consisting of a collection of mass
points. If the energy is to be minimized, one should
also include the control points �v � of the trajectory of
the origin (governing the translational part) into the
optimization.

4 Solving the Resulting Opti-
mization Problem

The affine spline motion is found by minimizing the
objective function

�
(possibly plus certain energy

function) subject to the interpolation conditions.

4.1 Inserting additional keyframes

If the given keyframes are too far apart, and the
numerical optimization fails, then one should insert
auxiliary keyframes.

First case: General affine motion. If we want to
design a general affine motion, then one can sim-
ply generate auxiliary keyframes by interpolating the
neighbouring four positions with cubic curves and
associated matrices, and evaluating them at the de-
sired parameter value.

Second case: General rigid body motion. If the affine
spline motion is to approximate a rigid body mo-
tion, then the inserted keyframes should be orthog-
onal ones. They can either be obtained by applying
an orthonormalization technique to the result of the
cubic interpolation (see [16]), or by applying a ratio-
nal motion-based interpolation procedure to the data
(which gives a perfectly rigid rational spline motion),
or, alternatively, to a fixed number (e.g. four) neigh-
bouring data, see Jüttler and Wagner [9].

4.2 Construction of an initial solution

With the help of polynomial spline interpolation, we
construct an initial solution. Here, the affine spline
motion is either of lower degree, or it is defined over
a subset of the knots only. The number of degrees
of freedom should be equal to the number of condi-
tions. Consequently, the initial solution can be found
by solving the system of linear equations which is
obtained from Equation (7).

After the initial solution has been found, we raise
its degree and/or apply knot insertion, in order to ob-
tain the representation of the desired degree and/or
with respect to the full knot sequence. This intro-
duces some extra degrees of freedom which are to
be used for minimizing the objective function. If an
initial solution is found with the cubic spline interpo-
lation technique or other well-designed interpolation
schemes, the knot insertion seems more appropriate
way for adding extra degrees of freedom.

In our current implementation, the locations of the
new knots are specified by the user. In many cases,
using simply a uniform refinement gives good re-
sults. In order to obtain a knot distribution which is
well adapted to the data, the knot placement should
be governed by the distribution of the rigidity mea-
sure, i.e., by the integrand of (10). We are currently
developing heuristics for automatizing this process.



4.3 Elimination of interpolation condi-
tions

The minimization of the objective function subject
to the interpolation conditions leads to a constrained
optimization problem, which can be solved using La-
grangian multipliers. This results in a non–linear
problem with a higher number of unknowns, as each
interpolation conditions generates an auxiliary un-
known parameter.

In order to simplify the computations, however,
we prefer to eliminate the interpolation conditions
from the problem. This can be achieved by solv-
ing them for some of the unknowns, and substituting
them back in the objective function, as follows.

By introducing sufficiently many new degrees of
freedom (i.e., by inserting sufficiently many new
knots, after generating the initial solution), it is al-
ways possible to ‘decouple’ the interpolation condi-
tions. More precisely, it is then possible to identify
one control point �v � (with the associated control ma-
trix

� �
) per interpolation condition (7) which does

not influence the other interpolation conditions. For
instance, if the initial solution is a cubic spline with
knots at the parameters ( � , then it will be sufficient
to insert one new knot per segment, as the support of
each B-spline � � 
)(  consists of four segments. One
may then easily eliminate the interpolation condition
by solving it for this control point (and the for asso-
ciated control matrix).

The resulting minimum set of free parameters will
be denoted by F � 
�� � �	�	���	�����  . The initial solu-
tion is denoted by F

� ���
.

4.4 Newton iteration

The solution F � to the optimization problem

� 
 F  � min (13)

is characterized by the necessary conditions�
		 � ��� � 
 F �  � � � � � � ���	�	���� � (14)

Starting from the initial solution F
� ���

, we obtain a
sequence of approximate solutions from the well–
known Newton iteration

F
������� � � F

��� � 
���� ��� � ��� � � �	� � � ������� � (15)

where the correction term � ��� � � � � ��� is obtained
by solving the linear system ��� � � ��� � � #"! � 		 � � � � 
 F ��� � $# ����� �&%&% � � (16)

with the 
' 
��  � 
' 
��  Hessian matrix ��� � � � 	 .	 � � 	 � �
� 
 F ��� �  � �

� �
���
�&%&%&% � � (17)

The damping factor � ,
�)( �+* � , can be used

to control the speed of convergence. It may help to
overcome convergence problems.

Instead of using the full set of free parameters im-
mediately, one may try to introduce them gradually,
giving the solution more time to adapt. For instance,
if several new knots are to be inserted into the initial
solution, one may insert one knot (or several ones)
at a time, and apply the Newton iteration after each
step. The result of the previous iteration may then
serve as the initial solution for the next step. Degree
elevation can be handled similarly.

According to our numerical experiences, the algo-
rithm works very fast (sufficient for interactive mo-
tion design), as the initial solution is often fairly close
to the optimal one, and the Newton iteration provides
a quadratic rate of convergence.

5 Experimental Results

We apply the techniques to various affine spline mo-
tions, ranging from simple planar motions to general
spatial motions.

5.1 Planar motions with two keyframes

Given two affine keyframes
� �� and

� �� of a character
‘K’ with associated parameters ( � � �

and ( � � � ,
we try to find a 2D spline motion which minimizes
the rigidity part of the objective function (given in
Equation (11)).

Here, we discuss only the ‘rotational’ part of the
objective function. It is assumed that a suitable trans-
lational motion has been generated somehow.

We choose the spline motion as a Bézier motion of
degree 	 . The linear interpolation serves as an initial
solution. The interpolation conditions can be elimi-
nated from the problem by choosing the control ma-
trices

� � � � �� and
�-, � � �� . The inner control

matrices
� � ���	���	� � ,/. � are free for optimization.

In order to avoid convergence problems we use an
iterative degree elevation. That is, the approximate
solution of degree 0 # � serves as an initial solution
for the optimal motion of degree 0 . In Figures 1 and
2, we show two examples of Bézier motions which
have been generated using this approach. In these
examples, the trajectory of the origin has not been
included in the optimization.

In the example of Figure 1, we have chosen two
orthogonal keyframes at the boundaries. Linear,
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Figure 1: Affine motions (a,b,c) and the inner products of test vectors (d) for two orthogonal keyframes.

quadratic, and cubic motions are obtained by mini-
mizing the rigidity function of Equation (11). The ac-
curacy of the results is illustrated by the plots in Fig-
ure 1d, showing the inner products between the test
vectors (the two unit vectors of the coordinate axes).
In the ideal case, these inner products should be equal
to either 0 or 1. In the cubic case (Fig. 1c, and dotted
curves in Fig. 2d), these values are very close to the
ideal ones. Moreover, the rigidity value has also been
reduced to an almost vanishing value since this is an
affine motion that approximates a rigid body motion.

In the example of Figure 2, we haven chosen two
general keyframes at the boundaries, with the left
one being non–orthogonal. Again, linear, quadratic,
and cubic affine motions are obtained by minimiz-
ing the rigidity function of Equation (11). Again, the
inner products of the test vectors (shown as arrows)
are plotted in Figure 2d. In the cubic case (Fig. 2c,
and dotted curves in Fig. 2d), these values change al-
most linearly, which means that the result is almost
optimal. Differently from the previous case, the mo-
tion of Figure 2 is not intended to approximate a rigid
body motion. Consequently, the rigidity value is still
quite large even in the final result of Figure 2c.

5.2 Planar motions interpolating multi-
ple keyframes

In the example of Figure 3, we consider a planar
curved object (composed of eight ellipses) under an
affine motion. Four keyframes are given that repre-

sent different affine copies. An optimal interpolating
motion is generated as follows.

An initial -/. cubic spline motion is computed us-
ing a cubic spline interpolation. The initial solution
has much distortion and undulation as shown in the
plot on the right–hand side of Figure 3(a). In or-
der to obtain a better solution in the next iteration,
we generate free parameters by inserting three addi-
tional knots (one in the middle of each interval) to
the original knot sequence. The Newton iteration is
then applied to these parameters.

The accuracy of the final result is illustrated in the
plot on the right–hand side of Figure 3(b), where the
inner products between the test vectors are shown.
Two grey ellipses in each keyframe represent two or-
thogonal test vectors. Note that the lengths of these
test vectors change smoothly and the object rotates
while moving along the path.

In the ideal case, the inner product of two orthogo-
nal test vectors should be equal to 0; and the lengths
of test vectors should change in a pattern similar to
the cubic spline functions that interpolate the lengths
of test vectors at keyframes. Though we used only
three additional knots and also low degree splines
such as cubic, the final result is very close to the ideal
case. In fact, there is no much difference between the
plot of Figure 3(b) and the ideal result generated by
cubic spline functions that interpolate the values at
each keyframe. The energy of the rotational part has
also dropped quite significantly. The rigidity value,
however, is still relatively large since the affine mo-
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Figure 2: Affine motions (a,b,c) and the inner products (d) of test vectors for two general keyframes.

tion has experienced much distortion even in the final
result of Figure 3(b).

5.3 Spatial motions interpolating multi-
ple keyframes

In the example of Figure 4, we consider an ellipsoid
under an affine spline motion. Given four general
keyframes in 3-space, an initial solution is computed
using a cubic spline interpolation. The initial solu-
tion has much distortion as shown in the plot on the
right–hand side of Figure 4(a).

Free parameters are then introduced by inserting
three additional knots. The Newton iteration is ap-
plied to these parameters in the same way as before.

Three test vectors are shown as grey bars in each
keyframe. They are parallel to the coordinate axes
of the moving frame. The affine copies at keyframes
have no shearing; thus the test vectors are orthogonal
each other at each keyframe. As shown on the right–
hand side of Figure 4(b), the test vectors are main-
tained nearly orthogonal in the final result. More-
over, their lengths change quite smoothly following
the pattern of cubic spline functions that interpolate
the values at keyframes. One may also notice that
the energy of the rotational part has dropped quite
significantly. Consequently, we can notice that the
final result is almost the optimal one.

5.4 Swept volumes and sweep surfaces
under affine motions

Using affine motions we may construct various inter-
esting three-dimensional shapes such as those shown
in Figures 5 and 6. The swept volume in Figure 5
has been generated by the affine motion of an ellip-
soid. Its boundaries have been computed by solving
the equation

������
 ��� 
+( � 
�� � �
 � � 
)( � � 
�� � �  � � 
+( � . 
�� � � � � � �

where
 �  
�� � �


is a parametric equation of the

ellipsoid, and
 � 
�� � �  ,  . 
�� � �  denote its partial

derivatives. Clearly, the envelope condition results
in a non–linear equation in � � � and ( which has to be
dealt with numerically, see [11] for details.

A different approach has been taken in Figure 6.
The surfaces are the sweep surfaces of a profile curve
- 
��  using affine motions

� 
)(  , with parametric rep-
resentations of the form

 
�� ��(  � � 
)(  - 
��  � (18)

Clearly, using spline curves as profiles we may gen-
erate affine tensor–product sweep surfaces.

6 Conclusions

In this paper, we presented a simple spline technique
for the design of affine motion that interpolates a
given sequence of affine keyframes. Experimental
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Figure 3: (a) An initial solution of a 2D general affine motion and the inner products of test vectors, and (b)
the final result of optimizing the 2D affine motion and the inner products of test vectors from the optimal
affine motion.

results have shown that cubic splines (with a few
additional knots) are effective in generating affine
spline motion that interpolates keyframes smoothly
with -/. -continuity. In essence, we have reduced the
affine motion design problem to a curve fairing prob-
lem in a 12-dimensional space, which can be solved
in a way similar to the 3-dimensional case. This re-
duction is possible since there are no additional con-
straints such as orthogonality conditions. Geometric
constraints and other optimization criteria can still be
imposed to our system with great ease and also in a
systematic way. We may apply the whole toolbox of
variational design to affine motions. The approach
proposed in this paper has much potential in motion
fitting applications, which is an important subject of
research in our future work.
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