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Abstract. Osculating paraboloids of second order of a surface have been dis-
cussed in classical affine differential geometry. We generalize this concept to
cubic osculating paraboloids. This yields a visualization of the local properties of
a given surface which depend on the derivatives of maximal order four.

Osculating quadric surfaces (and especially osculating paraboloids of second order) which
possess a contact of second order with a given surface have been studied in classical affine
differential geometry, see for instance [1, 2, 4, 5, 10, 13, 14, 15, 16]. Using such osculating
surfaces it is possible to analyze and to visualize the local properties of a surface which
depend on the partial derivatives of maximal order three. In the present paper we will
generalize this concept by discussing osculating paraboloids of third order.

In the first section of the paper we derive a very technical lemma which relates the Taylor
expansion of order 4 of a surface with respect to different (Cartesian or affine) coordinate
systems. Based on this lemma we can easily construct all osculating paraboloids of second
and third order of a given surface.

The aim of the second section is to summarize the known results on osculating paraboloids
of second order which have been derived in the classical literature. The author believes
that such a summary is necessary because the related literature is partially difficult to get
and no textbook on affine differential geometry contains a similar survey. Based on the
cone of B. Su we present a complete affine classification of non—flat surface points.

Cubic osculating paraboloids of a surface are studied in the third section. Their discussion
turns out to be decisively more complicated than that of osculating quadrics, but it yields
a number of very promising results.

After discussing flat surface points in the fourth section, we outline in a final remark
how the discussion of osculating paraboloids can be used in order to give a geometric
characterization of contacts of order n between two surfaces for n < 4.
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1. Representing a surface by its Taylor expansion

Consider a regular surface ® in the neighbourhood of one of its points O € ®. The point
O is chosen as the origin of a Cartesian xyz-coordinate-system, and the zy—plane of this
system is assumed to be the tangential plane of the given surface ® at this point. Then,
in a neighbourhood of the point O, the given surface ® can be described by a function
z = z(z,y) over the zy-—plane. Let this function z(z,y) be at least four times continuously
differentiable at the point O, i.e. at (o, yo) = (0,0). Then the surface can be approximated
in a neighbourhood of the point O by its Taylor expansion of order four,

z=pa(z,y) + p3(z,y) + pa(z,y) + ... (1)

where

oz, y) = f2,0332+f1,133y+f0,2y2 )
o3(z,y) = f3,o$3+f2,13329+f1,2$y2+f0,3y3 and
ou(z,y) = f4,0$4+f3,1333y+f2,2$2y2+f1,3$y3+f0,4y4

with certain real coefficients f;; € R (i,7 > 0,0+ j < 4).
Additionally we will study the Taylor expansion of the surface (1) with respect to another
system of coordinates. The three vectors

&=(10 0), &=(0 1 0), and #*Y=(a b 1) (2)

(for fixed real numbers a,b € IR) are chosen as the three direction vectors of an affine
coordinate system with origin O. Let (£ n ¢(®®)T denote the coordinates with respect
to this system. Analogously to (1), the given surface ® can be described by a function
¢lab) = ¢@b) (£ n) over the &n-plane. From (1) we can compute the Taylor expansion of
order four of ((*Y(&,n) at the point (&, mn0) = (0,0):

Lemma 1. The coordinate function ((*% = (@9 (& n) of the given surface (1) with respect
to the affine coordinate system (2) possesses at the point O, i.e. at (&9,m0) = (0,0), the
Taylor expansion

P&, m) = o5 (& m) + o5 (Em) + M (Em) + - (3)
of order four, where
GED) = foo &+ fia€n+ for (4)
W (Em) = t(&m) - a+ta(€m) - b+ts(Em) (5)
with

ti(&n) = 2f0€+ f11m) (f2,052+f1,1§77+f0,2772),
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&) = (Fn€+2foom) (foo& + fiién+ foan®),
t3(6,m) = [30E+ 180+ fialn’ + fozn®,

and
kl,l(ia 77) kl 2(5, 77) k1,3 (5: 77) a
W Em) = (o b 1) | ka(&m) kea(€m) kaa(ém) |- [ b (6)
. k?’,l(ga 77) k3 2(§a 77) k3,3 (55 77) P 1
=K(&,n)
with

k11(€,m) = 5fa0’ € +10 fi1foo® E0 46 f1.1% fop 07 + 6 foafao” £
+6 foofi1fo2 €n° + f1 €0 + fopfo2’ 0’ + fii®fozn’,
kio(6m) = koa(&m) = gfmfz,o2 &+ 4fo,2f2,o2 &n
+4 f1.1% 080+ 9 foofopfia E0° + % fi® En?
+4 1.2 fo2€n* + 4 fopfo22 En° + 3 fiifo2 0,
kig(&m) = ksi(&m) = 2 faofo0& +2 forfoo&n+2 fiifa0én
+% foofi26n° + % fiifor1 En° + % Joofsp €% + fiifig€n’®
+fo0fosEn° + forfo2 &n® + %f1,2f0,2 n* + %f1,1f0,3 n,
kop(€,m) = fia’foo &'+ foofon  E 46 foafiifoo&®n+ f11°
+6 f20f02" €N + 6 f11° fo2 17 + 10 fr1fo2> €0’ +5 fo 2 1’
kas(&,m) = ksa(&m) = %f2,1f2,o &+ %f1,1f3,0 'S + fo2f30En
+fi2f20 &n+ fi1fo &n+ % f2,0f0,3 &n* + % fiafig &n?
+3 fopfo 1 €07 + 2 fiifos€n® + 2 fiofo2 €n° + 5 fosfoa ',
kss(&,m) = fao&'+ F1 80+ fo2 €07 + frs€n® + foan'™.

Proof. With respect to the Cartesian xyz—coordinate—system, the surface represented by
the Taylor expansion (3) is described by the parametric representation

FEO(En) = €& +n-8&+ P n) )
E+a- (B"(En) + U™ (& m) + i (Em) + - )
= | n+b- (W€ + e + e Em +.) |- ()
Wi (€, m) + o0 (& m) + i (€, m) +

Resulting from (1), the given surface ® has in a neighbourhood of its point O the implicit
equation

z—pa(x,y) — p3(x,y) — pa(w,y) —... = 0. (8)

If the components of the parametric representation (7) are substituted for z,y and z in
the implicit equation (8), all terms whose total degree in £ and 7 is less or equal than 4
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vanish. This proves the assertion. []

Remark. The coefficients of the Taylor expansion (3) have been generated using the com-
puter algebra system Maple V. The first appendix contains the Maple code of this compu-
tation.

For a = b = 0 the affine coordinate system (2) becomes the original Cartesian system. In
this case, the Taylor expansions (3) and (1) are identical.

Note that the second order terms in (3) do not depend on the parameters a and b, i.e., they
are independent of the direction vector 7@ This fact results from the affine invariance
of the Dupin indicatrix pq(z,y) = £k (k € IR, constant).

The Taylor expansion (3) will be the main tool for the discussion of osculating paraboloids
of the given surface ®. Parametric representations of osculating paraboloids of second or
third order result from (7) by cancelling the terms whose total degree in £ and 7 is higher
than 2 or 3, respectively.

2. Osculating paraboloids of second order

From now on we always assume @s(z,y) # 0, i.e., the point O should be no flat point of
the given surface ®. By cancelling all terms of higher than second order we obtain from
(7) the parametric representation

£+ a- i (&)
PV ) = | n+b-viPEm) |- 9)
P& (€,m)

It describes the unique osculating paraboloid of second order with the axis direction Fah)
which has at O a contact of second order with the given surface ®. Resulting from Lemma
1, this paraboloid intersects the given surface in the curve described by the implicit equation

OV m) + 0 (Em) 4+ ... =0 (10)

in the parameter domain (i.e., in the tangential plane z = 0) of (9). In general, the
intersection curve has a triple point at O, where the three tangents (which may be complex
or multiple) are the null directions of the cubic form ¢§“"’) (&,m). These three tangents will
be called the osculating tangents of the paraboloid (9). The relationship between the axis
direction ©*” and the osculating tangents has been studied in classical affine differential
geometry, see [1, 2, 4, 5, 10, 14, 15, 16]. Here is an outline of the main results:

2.1 The Transon plane of a tangent

We ask for all paraboloids PQ(a’b)(ﬁ,n) (see (9)) which possess the fixed tangent T =
{(wér pnr 0)T| p € R} as an osculating tangent ((ér,mr) € R?\ {(0,0)}). As a
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necessary condition, the parameters a and b of the axis direction 7% have to satisfy the
linear equation

O (Er,mr) =t (Erynr) - a + to(Er, 1) - b+ ts(Er,m0r) = 0, (11)

see (5). Thus, provided that this equation does not degenerate, the axes p - F*? (i € R)
of the osculating paraboloids P{*" (&,m) with osculating tangent 7 span the plane

t1(&r,mr) -+ ta(érymr) -y + t3(§r,mr) - 2 = 0. (12)

This plane is called the Transon plane of the tangent 7. It degenerates for 3 tangents T
at most because po(z,y) Z 0 was assumed.

If the tangent 7" is an asymptotic tangent (2 (&7, nr) = 0) at the point O, then the Transon
plane becomes the tangential plane z = 0 of the surface @, cf. (5). Otherwise, the direction
of the line in which the Transon plane (12) and the tangential plane intersect is conjugated
to that of the tangent T with respect to the Dupin indicatrix of the surface.

Consider the intersection curve of the surface ® with an arbitrary plane through the point
O. As observed already by Transon, its affine normal at O (i.e., the axis of it osculating
parabola) is situated in the Transon plane of its tangent, provided that the Transon plane
does not degenerate [2, p. 128], [16].

2.2 The cone of B. Su

Now we consider the system of all Transon planes to the tangents 7" at the surface point
O. This system envelops a rational cone through O, the cone of B. Su [10]. If this cone
does not degenerate to a line or a plane (see below), than it contains the axes directions
® of all osculating paraboloids P{*" (&,m) which possess a (at least) double osculating
tangent, where the Transon plane of this double tangent has a first order contact with Su’s
cone along the generating line - #*? (4 € R).

A rational parametric representation of Su’s cone can be found from

tl(la )\) antl(ga 77)
CAp)=p- | t2(1,A) | x | Opta(§sm) AeRU{oo},pe R (13)
t3(1,A) Oyts(&,m) (€m)=(1,\)
(0 = 6%). Resulting from this and from (5), Su’s cone has at most the algebraic class

3 and order 4. We have the following possibilities which yield an affine classification of
reqular surface points with respect to the geometric properties of Su’s cone:

e Case 1: The cone of B. Su is of third class (and fourth order). Then the point O is
either an elliptic or an hyperbolic point of the surface ® and Su’s cone has a contact
of first order with the tangential plane z = 0 along the two asymptotic tangents.
Figure 1 shows Su’s cone and a Transon plane in the case of an elliptic point O.

5
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affine normal

Su’s cone

Transon plane of T’

tangential plane

tangent T

surface ®

Figure 1: Su’s cone and a Transon plane for an elliptic point O.

In Case 1, Su’s cone possesses three different cuspidal edges. These edges are axes

p-F (u € R) of those osculating paraboloids pied (&,m) which have a triple

osculating tangent. The parameters a, b of the axis direction of such an osculating
paraboloid fulfill the tree equations

(b

(a,b) _ 9 @y =

on

= 14
where (&p np 0)7 is the direction of the triple osculating tangent ((£p,7np) € IR? \
(0,0)). The resulting three linear equations for a and b are solvable if and only if the
determinant of the 2 x 3 coefficient matrix and of the right-hand side vanishes. This
yields the cubic equation

0 = f1,12f3,0 &’ — Jo2f2,0/3,0 &’ — Joofifo &p® + f2,02f1,2 &’
=3 fo2f20f21 §D277D +3 f2,02f0,3 5D277D + 3 fo2fi,1f30 §D277D
+3 faofosfiiépnp® + 3 foo fr0Epmp? — 3 foofa0fiep np?
—f0,2f2,of0,3 77D3 - f0,2f1,1f1,2 7)D3 + f0,3f1,12 77D3 + f0,22f2,1 77D3

(15)

for the three tangents D; = { (pu-p, pnp, 0)7 | u€ R} (i = 1,2,3) which are triple
osculating tangents of osculating paraboloids PQ(a’b) (&,m). These tangents are pairwise
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linearly independent. They are called the Darboux tangents of the given surface ® at
O. The three Darboux tangents and the corresponding cuspidal edges of Su’s cone are
either all real (for elliptic points O) ore one is real and two are conjugated—complex
(for hyperbolic points O). The three Transon planes of the Darboux directions
intersect in one line, the affine normal of the surface. Moreover, the three Darboux
tangents are the osculating tangents of the paraboloid PQ(G*’(’*) (&,m), whose axis is the
affine normal. This normal possesses the direction vector (a* b* 1)T with

o — =2 fo2fo0f12+ 3 fi1f20f03 — 6 f02,2f3,0 +3 faaf11f02 — f12,1f1,2

2
(4 forfoo — f21)
_6 f22,of0,3 =3 fi1fe0f12 +2 faofoofo1 + f12,1f2,1 — 3 f3,0/1,1f0,2

(4 fozfoo — £2,)’

and

b* =

Case 2: Su’s cone degenerates to a quadratic cone. Then the three cubic polynomials
t1(&,m),t2(&,m) and t3(€,m) (see (5)) must have exactly one common null direction
(&, 1, 0)7, because Su’s cone is only of class 2 ((&n,7,) € IR*\ {(0,0)}). Thus, they
possess the common linear factor (7, - £ — &, - 7). Resulting from the factorization
of t; and o, the tangent N = { (&, pn, 0)'| u € R} is one of the asymptotic
tangents of the surface ®, where O is a hyperbolic point. In the other asymptotic
tangent, the quadratic cone has a first order contact with the tangential plane z = 0.
In this case, all osculating paraboloids PQ(a’b) (&,m) possess the osculating tangent N,
because wg“”’) (ény M) = 0 holds for all a,b € R. Exactly one osculating paraboloid
has N as triple osculating tangent, its axis is the affine normal of the surface. The
tangent NV is the unique Darboux direction.

Case 3: 'The Transon planes form a pencil of planes through a line P =
{(pp pq pr)"| € R} where this line is no tangent of the surface ® (p,q,r €
IR,r # 0). Then, the Transon planes have to satisfy the equation

ti(&n) -p+ta(&,n)-qg+t3(§,m) -1 =0 (17)

for all £,m € R. Thus, the polynomial t3(£,n) can be represented as

1
t3(&,m) = —;(f0,27)2 + fii€n+ f2,0§2) (2gn fop+pfian+2p& fo0 +q& fi).
(18)
In this case, the osculating paraboloid with axis direction ¥** = (2 ¢ 1) has a

T r

contact of higher than second order with & as 1/J§a’b) (&,m) = 0 holds for all £,7 € R.
All other osculating paraboloids possess the asymptotic tangents as two of their

osculating tangents. The given surface has either an elliptic or a hyperbolic point at
0.
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e (Case 4: The Transon planes form a pencil of planes through the tangent P =
{(wp pg 0)"| p € R} of the given surface  ((p,q) € R*\ {(0,0)}). Then
the three Transon planes have to satisfy the equation

0 = t(&m)-p+hlén)-q (19)
= (f208+ fra€n + foon®) (2 foop&+ frapn+ fr1 a6 +2 forqn)

for all {,n € IR. So we have 2 foop+ f119 = fi1p + 2 fo2 ¢ = 0 which yields after
some calculations foo = ¢*k, fi1 = —2pqk, and foo = p*k with some constant
k € IR. Hence, O is a parabolic point with the asymptotic tangent P. All osculating
paraboloids PQ(a’b) (&,m), whose axes are contained in one Transon plane, are identical,
only the parametric representations are different.

An arbitrary tangent @ = { (u-§, pn, 0)"| p € IR} is a double osculating tangent
of the osculating paraboloid Ps“" (¢, n) if and only if 15" (&,, 1) = 8 ¥{*? (&4, mq) =
O () (€4,m¢) = 0 holds ((&,,m,) € R?\ {(0,0)}). From these equations we obtain
the condition

3f?,,0105q2 +f2,1ng2 +2 (o108 ng +2 f1208m; + fl,2p77q2 + 3fo,3q77q2 =0 (20)

for double osculating tangents in Case 4. We have the following four possible sub—
cases:

— Case 4.1: The equation (20) has two different solutions which are not the asymp-
totic direction of the surface. The two solutions can be either both real or conju-
gate complex. To each solution we get an osculating paraboloid (corresponding
to its Transon plane) which possess the line spanned by the null direction of
(20) as a double osculating tangent.

— Case 4.2: The equation (20) has two different solutions, the first one is the
asymptotic direction of the surface. We obtain one osculating paraboloid (cor-
responding to the Transon plane of the second solution of (20)) which possesses
the line spanned by the second null direction of (20) as double osculating tan-
gent. Moreover, all osculating paraboloids have the asymptotic tangent of the
surface as a single osculating tangent.

— Case 4.3: The equation (20) has a double solution, and this solution is not
the asymptotic direction. Then we obtain one osculating paraboloid Pz(a’b) (&,m)
which possesses this solution even as a triple osculating tangent.

— Case 4.4: The equation (20) has the asymptotic direction as a double solution.
In this case, all osculating paraboloids PQ(a’b) (&, m) possess the asymptotic tangent

as a double osculating tangent.

If the condition (20) is fulfilled for all £,7 € IR, then we have

8
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e Case 5: All non—degenerated Transon planes are identical. Similar to the previous
case, the point O is a parabolic point, and the Transon plane intersects the tangen-
tial plane in the asymptotic tangent. Moreover we can show that all paraboloids

(ab (&,m) with a axis direction 7% contained in the Transon plane are identical,
and they have a contact of higher than second order with the given surface ®. The
other osculating paraboloids possess the asymptotic tangent as a triple osculating
tangent.

The above list gives a complete overview over the geometric properties of Su’s cone and
over the existence of osculating paraboloids with double or triple osculating tangents for
non—flat surface points. Elliptic (hyperbolic ) surface points belong to the cases 1 or 3
(1, 2, or 3), whereas parabolic points always yield the cases 4 or 5. In the cases 3 and 5
hyperosculating paraboloids (i.e., with a contact of higher than second order) exist. The
formula for the affine normal of a surface (16) is valid for non—parabolic surface points,
but the equation for the Darboux directions (15) is only true for the first two cases.

3. Osculating paraboloids of third order

Similar to the previous section, the parametric representation

£+ a- (W5 (En) + w5 (€,n))
P m) = | n+b- (5P (En) + 9P (En)) (21)
D80 (& m) + 5V (€, m)

of the unique osculating paraboloid of third order with the axis direction 7% which has
at O a contact of third order with the given surface ® is obtained from (3) by cancelling all
terms of higher than third order. Resulting from Lemma 1, the cubic paraboloid Pg(a’b) (& m)
intersects the given surface in the curve which is described by the implicit equation

&)+ =0 (22)

in the parameter domain (i.e., in the tangential plane z = 0) of P. (a ? (&,m). In general, the
intersection curve has a 4—fold point at O, where the four tangents (which may be complex
or multiple) are the null directions of the quartic form w4a 2 ({-“ n). These four tangents are
called the osculating tangents of the cubic paraboloid P (a ? (&,m).

3.1 The axes’ cone

We will give a similar discussion of the relationship between the axis direction ¥*? and
the osculating tangents as for the quadratic paraboloids P2 (f, n). As first we again ask
for all paraboloids P{*”(¢,n) which possess the fixed tangent T = { (pu-&r pnr 0)7|
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p € R} as an osculating tangent ((&r,mr) € IR*\ {(0,0)}). As a necessary condition
(which is sufficient iff wia’b) (¢€,m) # 0), the parameters a and b of the axis direction #*?
have to satisfy the quadratic equation

a

W Er,nr) = (a b 1)-K(ér,mr)- | b | =0, (23)
1

cf. (6). Thus, provided that this equation does not degenerate, the axes y - b (LeR)
of the cubic osculating paraboloids with the osculating tangent 7" form the quadratic cone

(z y z) K(r,nr) - =0 (24)

[SI S

This cone will be called the azes’ cone of the tangent 7". Of course, it can be imaginary
(with the real point O) or even degenerated:

Proposition 2. The azxes’ cone either degenerates for the asymptotic tangents and for 6
additional tangents T' which may be complex, multiple, or equal to the asymptotic tangents,
or it degenerates for all tangents of the given surface.

Proof. The determinant of the 3 x 3—matrix K (&, n) factorizes into the product

g (£208? + fra€ 0+ foar?) (=5 foafoofso™® + [76 terms] — 5 foofoofos’n®)  (25)

where the third factor is a polynomial of total degree 6 in & and 7. If this polynomial
vanishes identically, then the axes’ cone degenerates for all tangents. []

In the case of a parabolic surface point, at least 2 of the 6 additional tangents are the
asymptotic tangent, and the remaining 4 additional tangents degenerate to 2 pairs of
double tangents.

For any tangent 7" of the given surface we have its Transon plane (12) and its axes’ cone
(24). Additionally we can consider the Moutard quadric (see [3, §108], [11], or [14]) of
the tangent 7". It is formed by the osculating conics of all planar sections through the
given surface with the tangent T.' For instance, the Moutard quadric of the tangent

tThe Moutard quadric can be said to be the projective analogue of the Meusnier sphere which is well
known from Euclidean differential geometry. Note that also an affine analogue exists: the osculating
parabolae of all planar sections through the given surface with tangent T form a parabolic cylinder as
observed by T. Kubota in 1930 at first [10].

10
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{(p 0 0)" | ue€IR} has the implicit equation

0= fg,o z
fao sfa0 fia 5f20 f3,0 x
—(zy 2) %fg?’,o Ji1 fgs,o Joz2 %f2,o (fz,o Joi—fia f3,0) Y
R %f22,o f30 %f2,0 (f20 fo1—f11 f30) Ja0 fz,o—f32,o o \Z
= YL 0)
(26)

The Transon plane, the axes’ cone, and the Moutard quadric of a tangent are related as
follows:

Proposition 3. If the tangent T is no asymptotic tangent of the surface ® at O, then the
infinite conics (i.e., their intersections with the plane at infinity) of the Moutard quadric,
of the azes’ cone, and of the Transon plane (which is considered as a double line) belong to
a pencil of conics. If the axes’ cone is non—degenerated, then this pencil contains exactly
one other pair of lines. The cross ratio of this line pair with the above three conics is always
equal to %.

Proof. We consider the tangent 7= { (¢ 00)" |z € R}. The double line at infinity of
its Transon plane and the axes’ cone generate the pencil of conics

x
0= tl(l,O)l'+t2(1,0)y+t3(1,0)22—7"f270'($ y z)-K(1,0)- |y (27)
z

with parameter 7 € R U {00} in the infinite plane. If it collapses to a system of line pairs
(or double lines), then the axes’ cone of the tangent 7" is degenerated. For 7 = 0 we obtain
the Transon plane, whereas 7 = oo yields the axes’ cone. Moreover, from 7 = 1 we get the
infinite conic of the Moutard quadric, and 7 = % yields a pair of lines. []

The situation in the plane at infinity has been drawn in Figure 2: The four conics from
Proposition 3 are shown, where the infinite line of the tangential plane is chosen as the
infinite line of the Figure.

With help of the Moutard quadric we can formulate a geometric characterization of the
tangents with a degenerated axes’ cone:

Proposition 4. The azes’ cone (24) of a tangent degenerates into a pair of planes (which
may be complex or identical) if and only if the corresponding Moutard quadric is an elliptic
or hyperbolic paraboloid, a cylinder, or (in the case of the asymptotic tangents) a pair of
planes.

Proof. The Moutard quadric (26) of the tangent T = { (z 00)" | € R} is an elliptic
or hyperbolic paraboloid, a cylinder, or a pair of planes, if its intersection with the plane
at infinity degenerates to a pair of lines, i.e., if det(M(1,0)) = 0 holds (cf. (26)). On the

11
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ylz Of
- ]5?
-2 ~ Transon plane
Moutard quadric
an 5 5 =) ) i 3
xl z

Figure 2: The pencil of conics in the plane at infinity

other hand, the axes’ cone degenerates if the equation det(K(1,0)) = 0 is fulfilled. Both
conditions turn out to be equivalent. []

The Transon plane of a tangent 7 intersects the tangential plane of the given surface in
another tangent, whose direction is conjugated to that of 7" with respect to the Dupin
indicatrix. Similarly, the intersection of the axes’ cone of a tangent T" with the tangential
plane is already determined by the Dupin indicatrix, i.e., by the second order properties
of the given surface:

Proposition 5. If the azes’ cone (24) of a tangent T is non—degenerated, then it inter-

sects the tangential plane in two lines L) and L®) (which can be conjugated—complex or

identical). For elliptic or hyperbolic surface points, the cross ratio of the line L) or L(?)
1

with the tangent T' and with the two asymptotic tangents is either equal to 5 + %\/5 or

to % — %\/5 For parabolic surface points, both lines L") and L@ are identical with the

asymptotic tangent.

Proof. Consider the axes’ cone (24) of the tangent T={ (2 00)" | x € R }. If this cone
is non—degenerated, then it intersects the tangential plane in the pair of lines

1 1
fo0’2? + fiifooxy + gf0,2f2,0 y> + 5fl,12y2 =0. (28)

12
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If the lines { (puay uB 0)T | p€ R } and { (pao B2 0)" | w € IR } are the asymptotic
tangents of the surface ® ((ay, 1), (az, B2) € C*\ {(0,0)}), then we have

foo =K 5182, fin=—K - (fi+o1f) and foo:=K- oo

with some constant K € IR. Then, the two lines L(Y), L(?) obtained from (28) possess the
direction vectors

6o oz 1 B2 + 2 Bl an® + 20425
1072 = :F%(:F5+\/5) : <2041/52+304251i\/551 042) B B2
0

Thus, the cross ratio of the lines L), L® with the two asymptotic tangents A;, A, and
the given tangent T is equal to

_ C(7/2) 5 70/2)
CI‘(Al,AQ,L(l/Z),T): (?10 /611) (11 ﬁ? 12 0[2) ::lii\/g
(1 51/2) 0-— 151/2) 1) : (a1 Ba — B C¥2) 2 10
This completes the proof. []

Without proof we add still the following two results:

e The infinite point of a tangent 7T is always polar to the Transon plane (12) of the
tangent with respect to the axes’ cone (24), provided that neither the axes’ cone nor
the Transon plane are degenerated.

e Consider the case where Su’s cone does not collapse to a line or a plane. If the axes’
cone of a tangent T is non—degenerated, then the center point of its intersection with
a plane parallel to the tangential plane is situated on the corresponding generating
line of Su’s cone (i.e., on the line where the Transon plane of 7" envelops Su’s cone),
see also Figure 3.

3.2 The system of all axes’ cones

Now we will discuss the system of all axes’ cones to the tangents 7" of the given surface ®
at its point O. Similar to the discussion of the system of Transon planes, the axes’ cones
envelop a cone through the surface point O. We will consider only the most general case,
especially we assume that the axes’ cone degenerates only for a finite number of tangents:

Proposition 6. For hyperbolic or elliptic surface points, the system of the axes’ cones
envelops an algebraic cone which has the mazximal order 12. This cone intersects the
tangential plane z = 0 only in the (each 6—fold) asymptotic tangents. For parabolic surface
points, the system of the axes’ cones envelops an algebraic cone of maximal order 8 and
this cone intersects the tangential plane z = 0 only in the (8-fold) asymptotic tangent.

13
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Proof. 'The points on the cone which is enveloped by the system of axes’ cones satisfy the
two quadratic equations

(zy2)KEn-|y|=0 and (xyz)-a%ff(s,n)- —0. (20

[SII SIS
[SII SIS

(&,m € IR). Elimination of the parameters ¢ and 7 using the resultant method (see
e.g. [6, 17]) yields the equation of an algebraic cone. For elliptic and hyperbolic sur-
face points, the Maple code of the implicitization is presented in the second appendix. As
shown using Maple, the intersection of the algebraic cone with the tangential plane z = 0
factorizes for elliptic and hyperbolic surface points in the product of the equations of the
asymptotic tangents to the sixth power. The proof for parabolic points results similarly.

]

As a first example, Figure 3 shows the system of the axes’ cones, the algebraic cone of
order 12 enveloped by this system, and the cone of B. Su for a surface with an elliptic
point O. In the Figure, the intersections of these cones with the plane z = 1 have been
drawn. Note that some of the axes’ cones are imaginary. The centers of the intersections
of the axes’ cones with the plane z = 1 are located on the corresponding generator of Su’s
cone.

The axes’ cone (24) possesses also a representation as a cone of algebraic class 2. Analo-
gously to the elimination of the parameters &, n from the equations (29), we can find the
algebraic description of the cone of order 12 from the previous Proposition as a class cone.
It can be shown, that the algebraic class of this cone is not greater than 28 for elliptic or
hyperbolic surface points (20 for parabolic points). Unfortunately, Maple V was unable to
compute the class equation of this cone in the general case, only in a few examples it was
successful. In all these examples, the equation of the cone factorizes and the cone has only
the algebraic class 22 for elliptic/hyperbolic surface points and 12 for parabolic points. So
the author conjectures that the algebraic class of the cone enveloped by the system of axes’
cones is generally equal to 22 or to 12 for elliptic and hyperbolic or for parabolic points,
respectively.

In the general case, the cone of algebraic order 12 enveloped by the system of the axes’
cones is formed by the axes p - Fl@b) (1 € IR) of the cubic paraboloids P?,(a’b) (&,m) which
have a (at least) double osculating tangent. (To any tangent T generally correspond four
cubic paraboloids P?,(a’b) (&,m) (which may be complex) with 7" as a double osculating tan-
gent.) The singularities of this cone (e.g., cuspidal edges or double lines) correspond to
cubic paraboloids with multiple osculating tangents (e.g., a triple osculating tangent or a
pair of double osculating tangents). Of course, the discussion of the geometric properties
of the cone and of its singularities is very difficult. At this point we cannot present any
interesting further results.

14
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The algebraic cone of order 12

0.57

Su’s cone ---...

The system of the axes’ cones

1 05 0 Ny 05 1 15 2

Figure 3: The system of the axes’ cones (in grey), its envelope (black), and
the cone of B. Su (dotted) in an elliptic surface point.

3.3 The polars of the affine normal with respect to the axes’ cones

Consider again the axes’ cone (24) of a tangent 7. In this section the affine normal of the
given surface is assumed to be defined using formula (16), i.e., we have either an elliptic or
a hyperbolic surface point O. Then, the polar plane of the affine normal (pa* pb* u)’
(u € R) is given by the equation

*

a

0 = (zyz)-KE&n- |0 |=qaEn -v+¢&n -y+aea&n)-z.
1

Resulting from (6), the three functions ¢;(&, ), ¢2(&, n) and ¢3(&,n) are quartic polynomials
in £ and 7. Corresponding to the system of axes’ cones of all tangents at the surface point
O we get a system of polars (30) of the affine normal.

Proposition 7. In the general case, the polar planes (30) of the affine normal (16) with
respect to the system of all axes cones (24) envelop a rational cone of algebraic class 4
and order 6 through the (elliptic or hyperbolic) point O. The intersection of each polar
(80) with the tangential plane is a tangent G through O, which depends only on the local
properties of third order (i.e., on the partial derivatives of maximal order 3) of the given
surface.

15
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Proof. The second part of the proposition remains to be shown. It results immediately
from the fact, that the coefficients of the quartic polynomials ¢;(£,n) and ¢2(&, 1) (which
can be computed from (5) and (30)) depend only on the coefficients f;; of the expansion
(1) with i 4+ 5 < 3. []
As a second example, Figure 4 shows the system of the axes’ cones, the rational cone of
class 4 enveloped by the polars of the affine normal, and the cone of B. Su for a surface
with a hyperbolic point O. Again, the intersections of these cones with the plane z = 1
have been drawn.

Q.
Lo}

The system of
the axes’ cones

Su’s cone

4-

0-
//’/ NP
JAY 2 Cone enveloped by the polars...
////
26 4 2] 6 3 3 3 5 1% 12

Figure 4: The system of the axes’ cones (in grey), the envelope of the polars
of the affine normal (dashed), and the cone of B. Su (solid) in a
hyperbolic surface point.

On the one hand, the rational cone from this proposition characterizes the distribution
of the axes’ cones (24). Hence, it can be used as a visualization of the local surface
properties. On the other hand, there is no direct relationship between the cubic paraboloids
ng“”’) (&,7n) with multiple osculating tangents and the axes directions which are contained
in the rational cone. Especially, the cuspidal edges and multiple lines of the cone have
no direct meaning for the cubic osculating paraboloids. Therefore the discussion of the
algebraic cone of order 12 introduced in the previous section seems to be more promising,
but it is also decisively more complicated.

16
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4. Flat points

For the sake of completeness we briefly discuss the case of flat surface points which has
been excluded from the previous considerations. These surface points are characterized by
wa(x,y) = 0, i.e., the tangential plane z = 0 and the surface have a contact of (at least)
third order at the point O. Under these assumptions, the terms of the Taylor expansion
(3) with respect to the affine coordinate system (2) degenerate to

P m) =0
D0 (& m) = pa(€,m) (30)
0 (Em) = pal€,m)

Thus, all osculating paraboloids (9) of second order degenerate to the tangential plane of
the surface. The three osculating tangents (i.e. the tangents of the intersection with the
surface at O) of the tangential plane are the three null directions of the cubic form ¢3(z, y),
provided that o3(z,y) Z 0 holds (the tangential plane is presumed to have no contact of
higher than second order with the surface). The osculating tangents may be multiple or
two of them may be conjugated—complex.

The cubic osculating paraboloids result from (21) and (30). Due to pied) (&,n) = @a(&,1m),
all these cubic paraboloids possess the same osculating tangents, provided that ¢4(x,y) Z 0
holds (they are presumed to have no contact of higher than third order with the given sur-
face). Again, the osculating tangents may be multiple, or two of them may be conjugated—
complex.

In the neighbourhood of flat surface points, the null directions of the cubic forms ¢3(z,y)
and ¢4(z,y) yield an affinely invariant characterization of the surface properties depending
on partial derivatives of maximal order four. In contrast with this, these null directions
are not affinely invariant for general non-flat surface points.

Final remark

The discussion of osculating paraboloids gave rise to the definition of certain cones asso-
ciated with each surface point. These cones characterize the distribution of the Transon
planes or of the axes’ cones at the given surface point. So we can derive an affinely in-
variant visualization of the local surface properties: Su’s cone and the algebraic cone of
Proposition 6 characterize the properties which depend on derivatives of maximal order 3
and 4, respectively. Another visualization of the third order properties of a surface is given
by the cubic indicatrix (see [8, 9]), but this curve is not affinely invariant.

As a consequence, we get a geometric interpretation of the order of contact between two
surfaces. This notion has a long history in differential geometry, cf. [12]. During the last
years, it has become a subject of renewed interest as “Geometric Continuity” in Computer
Aided Geometric Design, see [7]. Usually, the contact of n—th order between two given

17



Osculating Paraboloids of Second and Third Order

surface is defined by the existence of a reparameterization ensuring a C"—joint of the two
parametric representations. For a contact of order n < 2, the geometric characterization is
obvious: first and second order contacts mean common tangential planes and (additional)
coinciding Dupin indicatrices, respectively. Now we are able to derive a similar affine in-
variant characterization for contacts of third and fourth order: Two surfaces have at a
common point a contact of order three, if the tangential planes, the Dupin indicatrices,
and the cones of B. Su are identical. Moreover, they possess a fourth—order—contact, if for
each tangent the corresponding generators of the rational cone which is enveloped by the
polars of the affine normal with respect to the axes’ cones (see Proposition 7) coincide.

Appendix 1: The proof of Lemma 1

This Maple program generates the coefficients of the Taylor expansion (3).

f := array(0..4, 0..4):

phi := array(2..4):

# Taylor expansion of the given surface in xyz coordinates:
for i from 2 to 4 do

phili]l := sum( ’£[j,i-j] * x°j * y~(i-j)’, ’j’=0..1);

od;

phisum := phi[2] + phi[3] + phil[4];

g := array(0..4, 0..4):

psi := array(2..4):

# Taylor expansion with respect to affine coordinates:

for i from 2 to 4 do

psili]l := sum( ’g[j,i-j]1 * xi"j * eta”~(i-j)’, ’j’=0..1);
od;

psisum := psi[2] + psi[3] + psil[4];

# The Parametric representation of psisum in xyz coordinates...
:= xi1 + a * psisum;

eta + b * psisum;

is inserted into the implicit equation of the given surface:
:= collect( subs(x=X, y=Y, z=Z, seq( xi"i=0, i=5..186),
seq(eta”i=0, i=5..16), expand(z-phisum)), [xi,eta],distributed );
eqn := array(0..4, 0..4):
# All terms of total degree < 5 in xi,eta must vanish:
for i from 0 to 4 do
for j from O to 4-i do
eqnl[i,j] := coeff(coeff(t, xi, i), eta, j)=0;
od;
od;
# Computation of the coefficients gli,j]
eqs := seq(seq(eqn[i,j], j=0..4-1i), i=0..4):
vars := seq(seq(gli,jl, j=0..4-1), i=0..4):
assign(solve(egs, vars));
# The result:

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

> X
>Y
> Z := psisum;
> #
>t
>

>

>

>

>

>

>

>

>

>

>

>

>

> seq(print(’i’=i, ’ psil[i]’=sort(psilil, [a,bl)), i=2..4);
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Appendix 2: The proof of Proposition 6

This Maple program can be used after performing the calculations of Appendix 1. We use
the canonic equations of elliptic or hyperbolic surface points as derived in [2, p. 109/110]
because otherwise the formulae would become too large.

> # canonical equation of an hyperbolic point - type 1

> f£[2,0]:=1/2: £[1,1]:=0: £[0,2]:=-1/2:

> f[3,0]:=C/6: f[2,1]:=0: f[1,2]:=1/2*C: £[0,3]:=0:

> (canonical equation of an hyperbolic point - type 2

> # £[2,0]:=1/2: f[1,1]:=0: £[0,2]:=-1/2:

> # f[3,0]:=1/6: f[2,1]1:=1/2: £f[1,2]:=1/2: £[0,3]:=1/6:)

> (canonical equation of an elliptic point

> # £[2,0]:=1/2: f£[1,1]:=0: £[0,2]:=1/2:

> # £[3,0]:=C/6: f£[2,1]:=0: f[1,2]:=-1/2%C: £[0,3]:=0:)

> with(linalg):

> # generating the 3x3-matrix of the axes’ comne

> rkmat := matrix(3,3,[

> sort(coeff (expand(psil[4]),a"2),[xi,etal),

> 1/2xsort (coeff (coeff (expand(psil[4]),a),b), [xi,eta]),
> 1/2xsort (coeff (expand (subs (b=0, psil[4])),a), [xi,etal),
> 1/2*sort (coeff (coeff (expand (psil[4]),a),b), [xi,etal),

> sort(coeff (expand(psil[4]),b"2), [xi,etal),

> 1/2x*sort (coeff (expand (subs(a=0, psil[4])),b), [xi,etal),
> 1/2*xsort (coeff (expand(subs(b=0, psil[4])),a),[xi,etal),
> 1/2*sort (coeff (expand (subs(a=0, psi[4])),b), [xi,etal),
> sort (subs(a=0,b=0,expand (psi[4])), [xi,etal) 1 ):
> # equation of the axes’ cone in xyz coordinates

> psidxyz := multiply( transpose(vector(3,[x,y,z])), rkmat, vector(3, [x,y,z]));
> # the two equations of the cone enveloped by the axes’ cones
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

H H H H B

# yields two cubic polynomials

collect(collect(psil[4],eta),xi);

xyzpolyl := collect(collect( diff(psidxyz,eta) ,eta),xi);

xyzpoly2 := collect(collect( 4/xi*psidxyz - eta/xi*diff(psidxyz,eta), eta),xi);
# the coefficients of these polynomials —-> two matrix rows

matrowl := seq(coeff(coeff(xyzpolyl, xi,i),eta,3-i), i=0..3);

matrow2 := seq(coeff(coeff (xyzpoly2, xi,i),eta,3-i), i=0..3);

# dependencies between the xi"ixeta”(3-i) -> three matrix rows

matrow3 := 1,-lambda,0,0;

matrow4 := 0,1,-lambda,0;

matrowb := 0,0,1,-lambda;

# from the five matrix rows we construct three 4x4-matrices

# their determinants are three quadratic polynomials in lambda

resupoll :

det(matrix (4,4, [matrowl,matrow2,matrow3,matrow4])) ;
resupol? := det(matrix (4,4, [matrowl,matrow2,matrow3,matrow5]));
resupol3 := det(matrix (4,4, [matrowl,matrow2,matrow4,matrow5])) ;
# these three polynomials must have a common root, their
# resultant yields the algebraic equation of the enveloped cone
implequ := collect (expand(

det (matrix (3,3, [seq(coeff (resupoll,lambda,i),i=0..2),
seq(coeff (resupol2,lambda,i),i=0..2),
seq(coeff (resupol3,lambda,i),i=0..2) 1))),[x,y,z]):
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# the order of the algebraic cone is equal to:

> degree(implequ, [x,y,z]);

vV Vv

vV Vv

12

# generally it cannot be factorized
factor (implglequ);

...

# intersection with the tangential plane: asymptotic tangents
factor (subs(z=0, implequ)) ;

6 6
5/4 (x - y) (x+1y)
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