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This article is devoted to motion-based techniques
for generating NURBS surfaces. We present a highly
accurate approximation of the rotation—minimizing
frame (RMF) of a space curve, that leads to a RMF-
based scheme for rational sweep surface modeling.
Furthermore we study envelopes of moving devel-
opable surfaces emphasizing the special cases of a
moving cylinder or cone of revolution.
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INTRODUCTION

Motion—based surface generation is a fundamental
principle of shape construction. Surfaces can be
generated by sweeping a profile curve (also called
cross—section curve) along a given spine curve, see
e.g. References 8, 15. As a special case of this con-
struction, one obtains the so—called pipe surfaces,
which are generated by a moving circle.

On the other hand, surfaces can be generated as
envelopes of moving objects. As an important spe-
cial case one gets developable surfaces; they are the
envelopes of moving planes, see e.g. Reference 1. En-
veloped surfaces are particularly interesting in the

context of milling and layered manufacturing, but
also for the construction of gear tooth surfaces.

The introduction of NURBS as the standard
representation for geometric data in CAD systems
has made many new shape features available, see
Reference 9. Using NURBS one may exactly de-
scribe surfaces of revolution, quadric surfaces such
as ellipsoids and hyperboloids, developable surfaces,
and also sweeping surfaces. Piecewise rational (or
NURBS) motions (see Reference 7) are the most ap-
propriate tool for developing NURBS techniques for
motion—based surface generation.

The first part of the present paper is devoted to
sweeping surfaces. We present a rational approx-
imation scheme for the rotation minimizing frame
(RMF) of a spine curve. In geometric modeling, this
frame has been introduced by Klok®. Based on biarc
techniques, Wang and Joe!® have recently developed
an elegant approximation scheme. The newly devel-
oped rational scheme as described below improves
the accuracy of the approximation to the RMF. It
produces NURBS representations of sweeping sur-
faces that are pieced together of segments of degree
(6, k), where k is the degree of the profile (or cross—
section) curve. Unlike the biarc scheme, it produces
a true C! motion, which gives smooth sweeping sur-
faces also for non—planar profile curves. The scheme



can readily be modified to generate sweeping sur-
faces matching more general input data, such as a
sequence of positions of the profile curve.

The second part of the paper deals with the con-
struction of envelopes of moving developable sur-
faces. Developable surfaces are envelopes of one pa-
rameter sets of planes. This includes cylinders and
cones as degenerate cases. If both the moving sur-
face and the motion are rational, the resulting en-
velope will be a rational TP NURBS surface. This
extends the ideas introduced in Reference 7 for mov-
ing polyhedra to a much more general surface type.

BASICS FROM KINEMATICS

The points of Euclidean 3—space are described by
their coordinates p = (p, p, P, )T with respect to
a Cartesian coordinate system. Sometimes, how-
ever, it will be advantageous to use the homoge-
neous coordinates p = (po p1 pe p3)' instead,
p#(0000)T. If the homogeneous coordinates of
a point are given, then the corresponding Cartesian
coordinates are p. = p;/po, i = 1,2,3. Conversely,
the possible homogeneous coordinates of the point p
are p = (A Ap, Ap, /\;t_)s)T with A € R, A # 0. The
coefficient A is sometimes referred to as the weight
of the point p. The homogeneous coordinate vec-
tors with pg = 0 correspond to points at infinity;
they can be identified with the equivalence classes
of parallel lines. See References 9, 3, 5 for more
informations on weights, homogeneous coordinates,
and NURBS techniques.

With the help of homogeneous coordinates, the
equation of a plane in 3—space,

Lo+ Lip, + Lop, + Lgp, =0 (1)
(with certain constant coefficients L; € R), can be
rewritten as

Lopo +Lipi + Lops + Lyps =L p = 0.

(2)

L= (LyLi Ly L3y)" € R*, L # 0, is called the ho-
mogeneous coordinate vector of the plane. Any two
linearly dependent coordinate vectors correspond to
the same plane. The vector (100 0)T describes the
plane at infinity which is formed by all points with
po =0.

In order to study motions and motion-based sur-
face generation, we take two copies of the Euclidean
3—space. The first one is called the fized space, its
points and planes will be denoted with p (resp. p)
and P. These coordinates are often called the world
coordinates. The second copy is called the moving
spage, fwesth the points ~ ) and planes P.
For instance, the moving space can be identified
with a moving Cartesian coordinate systems which
is moved along a certain curve of the fixed space.
At each instant ¢, the moving space has a certain
position in the fixed space. This is described by the
coordinate transformation between both spaces,

M(t)

Here, the real 3 x 3—matrix R = R(t) is a special
orthogonal matrix for all ¢. It represents the differ-
ence of the orientations of the fixed and the moving
space. The vector u(t) specifies the origin of the
moving space in world coordinates.

At the instant ¢ = tj, the point P of the moving
space has the world coordinates p(tg), it coincides
with that point of the fixed space. The curve p(¢),
t € R, is called the path or trajectory of p. In partic-
ular, the origin of the moving system travels along
the curve u(t), t € R

In addition to (3), there is another transforma-
tion which applies to the planes of the moving sys-
tem. At the instant ¢, the plane P of the moving
system coincides with the plane

| —u()"R(#)

1
0
0| R@
0

M*(t)

in world coordinates. In fact, a short calculation

~T ~T
confirms that P'p=P M*"Mp=P p.
The rotation matrix R(¢) can be described

with the help of its homogeneous Euler parameters
(d07 d17 d2a d3) € R4a 7é {(07 Oa 07 O)}a



dﬁ+d§—d§—d§ 2(d1d2—d0d3) 2(d1d3+d0d2)
R(t) = X (2(d1d2+dods) di—di+d3—d3 2(dads—dod1) ) ,
2(d1d3—d0d2) 2(d2d3+d0d1) d%—d%—d%-i—d%
A = d2+d3+d2+d3,

(5)
see Bottema and Roth?. For any choice of these pa-
rameters, we obtain a special orthogonal matrix R.
The Euler parameters will be said to be normalized
if A =1 holds. The Euler parameters

(d07 dla d27 d3) = (COS %7

sin %vl, sin %vg, sin %Ug)
correspond to the rotation with axis v =
(vi v v3)7, ||¥|| = 1 and angle ¢. Any two lin-
early dependent quadruples of Euler parameters cor-
respond to the same rotation matrix.

The normalized Euler parameters of a rotation
matrix can be identified with the components of the
corresponding unit quaternion. Many quaternion—
based techniques for orientation interpolation in
computer graphics and robotics are available, see
Reference 13 for references.

A general motion is obtained by choosing in
(3) and (5) arbitrary functions wuy(%),...,us(t)
(which specify the trajectory of the origin) and
do(t),...,ds(t) (representing the rotation), with
suitable order of differentiability. A remarkable
class of motions is formed by the so—called ratio-
nal motions which are distinguished by the prop-
erty that the trajectories of all points are ratio-
nal curves. That is, the trajectories can be rep-
resented as NURBS curves. Rational motions can
be obtained from (3) and (5) by choosing not arbi-
trary functions but polynomials u; (¢),...,u3(¢) and
do(t),...,ds(t). One may even choose rational func-
tions w, (t), ..., us(t). By choosing the above param-
eters as (rational) spline functions, we obtain a ra-
tional spline motion. Various methods for computer
aided design with rational spline motions have been
developed in Reference 7. In particular, an interpo-
lation scheme is described there.

SWEEP SURFACE MODELING

Sweeping of profile curves along a given spine curve
is a powerful method to generate surfaces in com-
puter graphics and geometric modeling, see Wang
and Joe'® and the references cited therein. We re-
call some results concerning the rotation minimizing

frame (RMF) of space curve and derive a highly ac-
curate rational approximation scheme. This leads
to an algorithm for RMF-based sweep surface mod-
eling with NURBS.

Sweeping surfaces and frames

Consider a spatial motion M = M(t), see (3). We
take a rigid curve p(s), s € [0,1], in the moving
space and consider the surface

x(t,s) = M(t) p(s)- (6)

This surface is called a (general) sweeping surface.
The generating curve p(s) is referred to as the profile
curve (or cross—section curve). The parameter lines
s = constant are point trajectories, and the lines t =
constant are simply copies of the profile curve. See
Figure 1.12 of Bézier’s preface to Reference 3 for a
nice illustration of sweep surface generation.

Now consider another curve q(t) in the fixed
space. Any motion M(t) that satisfies the condi-
tions

(t)
la@)ll

Q-

0
Rit)[ 0] = and u(t)=gq(t) (7)
1

for all ¢ is called a frame with the spine curve q(t).
Frames are frequently used in sweep surface model-
ing, as they provide a simple possibility to associate
a motion with a given curve. If a motion is a frame,
then the origin of the moving system travels along
the spine curve, and the zy—plane of the moving sys-
tem is always mapped onto the normal plane of the
spine curve.

There are several ways to associate a frame with
a given spine curve. The well-known Frenet frame
of a curve (see any textbook on differential geom-
etry) is not suitable for applications, as the gener-
ated surface shapes often behave badly. The Frenet
frame of a C? curve is generally only continuous, and
points with vanishing curvature (inflections) may
even cause undesired flippings of the Frenet frame.
Thus, using the Frenet frame imposes severe restric-
tions on the spine curve. Even for C? space curves
with non-zero curvature, the Frenet frame exhibits
a certain amount of twist about the tangent which
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Figure 1: Angular velocity of the RMF.

may produce unnatural-looking sweeping surfaces,
see Reference 15 for examples.

Klok® has proposed to use the so—called rotation
minimizing frames instead. Recall that the angular
velocity @(t) = (w1 wo w3) " of the motion (3) can be
computed from

. 0 —Ww3 w2
RRT = w3 0 —w1 ) (8)
— w9 w1 0

see Reference 2. The matrix product RR' yields
a antisymmetric matrix as RR" = I holds for all
t. A frame of a curve is called a rotation minimiz-
ing frame of the spine curve q(t), if and only if its
angular velocity equals

() x 4(?)
(t),4(?))

(9)

Wrmr(t) =

e

with the inner vector product (.,.), cf. Figure 1. In
fact, if & is the angular velocity of a frame associated
with the given spine curve q, then it has to satisfy
the necessary condition*

Gx 3 _ 4 (i)
lall 4t \ 4l
The general solution of this equation can be shown
to be

&(t) = drmr(t) + A(t) a(t)

with the free parameter A = A(t), where Jrumr is
defined as in (9). Thus, Wrymr is the smallest possible
angular velocity satisfying the necessary condition,
as it is perpendicular to q. See Reference 8 for a
more detailed proof of this fact.

*Differentiating (7) gives R& = (d/dt) (&/llall). On the
other hand, it leads to R& = RR" (¢/|ldll) = & x (a/[4ll)-

If a frame of a spine curve is given, then any
other frame can be obtained by composing the frame
with rotations around the tangent. That is, the dif-
ference vector between the angular velocities of any
two frames is always linearly dependent on the tan-
gent vector q.

The rotation—minimizing frame associated with
a given spine curve can be obtained by integrating
the differential equation (8) with suitable initial con-
ditions, after substituting the components of Wryr
(see (9)) into the right-hand side. There would ex-
ist a solution, though generally not in a closed form.
In the sequel we develop a rational approximation
scheme for rotation minimizing frames.

Highly accurate rational approximation of
the rotation minimizing frame

To begin with we consider a segment of the spine
curve q(t), t € [to,t1], defined over a parameter in-
terval of length At = t; — tp. We choose a unit
vector ¥y which is contained in the normal plane of
the curve at t = tg, i.e. (Vp,q(tp)) = 0. By choosing
V¢ as the direction of the z—axis of the moving sys-
tem, we specify the position of the frame at t = ¢.
This leads to the orthogonal matrix
_ d(to) x Vo q(to)

o= (o) = (%o Lt ) 09
whose columns are obtained by collecting the three
individual vectors. In order to find the correspond-
ing motion of the RMF at the segment end point,
we transport the vector v along the curve segment
with the help of Klok’s method®, see Algorithm 1.
This can be seen as numerical integration of the dif-
ferential equation

Ww(t) = Grur(t) x W(t)

of the rotation minimizing frame® with the step
length At/N. Clearly, Klok’s method is a rather
coarse approximation of the differential equation.
One may use more sophisticated integration tech-
niques, e.g., the biarc scheme developed by Wang
and Joe'® or appropriate tools from numerical anal-
ysis.

As the result, we obtain a vector Vv which is
obtained by rotation minimizing transportation of



Algorithm 1 (Klok®):

Rotation—minimizing transportation of the vector

Vo along the spine curve q(t).

INPUT: vector Vg, number of steps N;

w = Vo;

for ¢ from 1 to N do
t=q(to+ & At); t =

(W, D)t;

t/[It]];
W=wW —

od;

Vi =w/|wl;

OUTPUT: vector V.

Vo from q(to) to q(¢t1). This vector specifies the
corresponding position of the RMF at ¢ = t1; it
defines the orthogonal matrix

q(t1) x ¥ g(tl))
la)l " llalt)l )

With the help of Algorithm 2 we compute the nor-
malized Euler parameters do = (do,0,do,1,do,2,do,3),
d; = (...) of the orthogonal matrices Ry, R;. The
sign of the Fuler parameters is adjusted so that
(do,dl) Z 0 holds.

The angular velocities &y and @ of the RMF
at t = to,t; can be computed from (9). Now we
apply Algorithm 3 to the C! Hermite boundary data
(Ro,do) and (Ry,d1). This gives the rational Bézier
representation of the orthogonal matrices

ZA HS(r

with the local parameter 7 € [0,1] and the rational
basis functions

Ry = R(t1) = (Vl,

R(to + TAt) (11)

HY (1) = w; B{(7 i=0,...,6,

6
)/ D w; By(7),
j=0

where BF(7) are the standard Bernstein polynomi-
als. By choosing cubic Euler parameters (or quater-
nions) d(7), we obtain from Euler’s formula (5) in-
terpolating orthogonal matrices of degree 6. They
are described by the coefficient matrices Ay, ..., Ag
with the associated weights wy,...,ws. With the
help of formulas for the angular velocity, expressed

Algorithm 2 (Weiss'6):

Euler parameters of an orthogonal matrix.

INPUT: orthogonal matrix R;
vi=(14r11+ro2+733,732-T23,71,3—73,1,72,1—T1,2);
vo=(r32—ro3, 14+71,1—T22—733,T1,24+72,1,71,3+731);
v3=(r1,3—73,1,71,2+72,1, 1=7T1,1+7r2 2733, 72 3+732);
vi=(ro,1—"1,2,71,3+73,1,72,3+73,2, 1 =111 —T2,24+73.3);
Choose the vector d from vy, ..., v4 with maximum
length!

d:=d/|dl};

OuTPUT: normalized Euler parameters +d, the sign
is arbitrary.

Algorithm 3:

C' Hermite interpolation with orthogonal matrices.
INPUT: normalized Euler parameter dg, di, angular
velocities @y, Wi;

—w;i1d;1 — wi2dio — wi3d;3
| windip twiadiz — wizdi2 0.1
v’L_ d_d+d 72_’7
Wi 2G40 — W4,104,3 T W; 3041

w; 3d; 0 + wi1d; o
= Bj(7)do + B} (7)(do + 4vo)
+ BY(r)(di - Atvi) + Bi(r)dy;
Compute the rational Bézier representation (11)
from Euler’s formula (5)! Explicit formulas for the
weights and coeflicient matrices are given in Refer-
ence 7.
OUTPUT: coefficient matrices Ay, . . .
ciated weights wy, - .., wsg.

— wj2d; 1

d(r)

, Ag with asso-

in terms of quaternions (e.g. Reference 2, p. 512),
it can easily be verified that they interpolate to the
given C! data at t = ¢y and ¢ = t;. In addition, the
construction of Algorithm 3 entails

wy = w1 = ws = wg = 1.

Also the remaining weights are close to 1; this leads
to a uniform distribution of the parametric speed.
Note that the denominator of the rational basis
functions is guaranteed to be positive, as it is the
sum of the squared Euler parameters, see (5).

Now we convert the spine curve segment approx-
imately into a rational Bézier curve of degree 6 with



Algorithm 4:
Conversion of the spine curve into a sextic Bézier
curve with the prescribed weights w;.

by = q(t0); by = by + (At/6wow1)q(to);

bg = ﬂ(tl); by = bg — (At/6w5w6)('1(t1);

A= ( [ HSHS dr )i jos,..4;

1
C={(J (g, — > HY b, )V HY d7 ) i1, 3k=2,...4;
i=0,1,5,6
The integrals are evaluated numerically.

Find components of the inner control points from
(bij )j=1,..3ik=2,..a = A7'C;

OUuTPUT: control points by, ..., bg.

the prescribed weights wy, . . . , wg,

The control points by, by, by, bg are computed from
the C' boundary conditions

u(to) = q(to),

q u(tp) =
u(t1) = q(t1), 1

g(tO)a
u(t) = a(t)-

(t1)
The remaining inner control points are found by

minimizing the L? norm of the difference between
the original spine curve and its approximation,

t1

F(by,byby) = [ lu(t) - a(0) dt.

to
They are computed by solving a 3 x 3 system of
linear equations, see Algorithm 4.

Summing up, we have constructed a rational mo-
tion of degree 6,

6 (1|0 0 0
M(to+7At) =" N
7

1=0

H}(r) (12)

=1

which approximates the rotation minimizing frame
of the segment of the spine curve. It satisfies C'
boundary conditions at t =ty and t = ¢;.

In order to generate a highly accurate approxi-
mation to the rotation minimizing frame, one may

decompose the spine curve into smaller segments,
t € [ti,tiy1], with certain knots (%;)i=o,..m- The
above construction is applied to the individual seg-
ments. This leads to a rational C' spline motion of
degree 6 which approximates the RMF.

Now consider a profile curve p(s). For instance,
the profile curve can be chosen as a NURBS curve.
The generated sweeping surface (6) is a NURBS sur-
face patch; its control points can easily be generated
by combining (12) with the NURBS representation
of the profile curve.

As an example we consider the sweeping surface
which is shown in Figure 2; it is traced out by a
quadratic rational Bézier profile curve. This surface
has been generated by the rational approximation
with 4 segments to the rotation minimizing frame
of the spine curve from Figure 3. The sweeping sur-
face is a tensor-product NURBS patch with 4 x 1
segments of degree (6,2); both the surface and its
Bézier control net are shown in Figure 2.

Figure 2: Sweeping surface generated by
a rational approximation to the
RMF of a given spine curve.



Figure 3 visualizes the accuracy of the approx-
imation to the RMF. The angular velocity vectors
of the rational approximation (black lines) and of
the exact RMF (grey lines, see (9)) have been plot-
ted along the given spine curve. There is only lit-
tle difference between both vector fields. Also, the
rational approximation can clearly be seen to be a
C'! motion, as the angular velocity is continuous.

A
|
2\
2 \

1 -2

Figure 3: Angular velocity of the RMF (grey)
and of its rational approximation
along the spine curve.

Finally, the accuracy of the approximation to the
spine curve is illustrated by Figure 4, which shows
the parametric distance function |u(t) — q(¢)]|-
Clearly, this distance function is somewhat mislead-
ing, as it depends on the parameterization of the
curves. However, it gives an upper bound of the
maximum distance error. Also, in applications it
is desirable to approximate not only the curve, but
also its parametric speed distribution. Thus, it is
well justified to use the parametric distance func-
tion as an error measure. Note that the distance
error shown in the Figure is already in the order of
the numerical noise.

0.0002

0.0001

0.5 1
t

Figure 4: Distance error of the rational ap-
proximation to the spine curve.

Comparison with the biarc scheme

Recently, Wang and Joe!® have described another
approximation to the rotation minimizing frame of a
spine curve. The given spine curve is converted into
a C' biarc spline curve, consisting of so—called equal
chord biarcs. The converted spline curve consists of
circular segments. Hence, the rotation minimizing
frame of each segment can be computed exactly; it
is simply the rotation which generates the circular
arc. Thus, one gets an approximation to the RMF of
the original spine curve which consists of segments
of rotations; the axes are those of the circular seg-
ments. Consequently, the sweeping surface which is
generated by a moving profile curve is approximated
by segments of surfaces of revolution.

With the help of the quadratic NURBS repre-
sentation of the circular arcs one obtains a quadratic
rational motion which approximates the RMF, see
Reference 15. Generally, this approximation is only
a C° motion, as the axes of adjacent circular arcs
may be different. Nevertheless, a profile curve which
travels in the normal plane of the spine curve gen-
erates a G sweeping surface. This, however, is not
true for general profile curves.

In order to compare our rational approximation
with the biarc scheme, we have computed the biarc
approximation to the RMF for the spine curve from
Figure 3. We used a biarc spline with 6 segments,
i.e., which consists of 12 circular arcs. This leads to
sweeping surfaces which have a similar data volume
as the rational approximation with only 4 segments.
Using the biarc approximation, the trajectory of a
point is described by 12 -2 + 1 = 25 control points.
The rational approximation needs 4:-6+1 = 25 con-
trol points too. Here, the boundary control points
of each segment are counted only once.



Similar to Figure 3, Figure 5 visualizes the accu-
racy of the approximation to the RMF. The angular
velocity vectors of the biarc approximation (black
lines) and of the exact RMF (grey lines, see (9))
have been plotted along the given spine curve. The
direction of the biarc angular velocity is constant for
each circular segment, but its length may vary, due
to the quadratic NURBS representation. Even if the
number of circular segments (12) is relatively large,
there difference between the exact angular velocity
and that of the biarc approximation is still fairly
big. Also, it can clearly be seen that the biarc ap-
proximation is far from being a C' motion.

Figure 5: Angular velocity of the RMF (grey)
and of its biarc approximation along
the spine curve, compare with Fig. 3.

The accuracy of the approximation to the spine
curve is illustrated by Figure 6, which shows the
distance function [|b(t) — q(#)||, where b(?) is the
biarc approximation. Again, the parametric dis-
tance function has been plotted. Nevertheless it can
clearly be seen, that the maximum distance error is
now in the order of = 0.15, compared with 0.0002
for the rational approximation scheme.

As a second example, the RMF of a helix seg-

0.16
0.12
0.08
0.04

0.5 1
t

Figure 6: Distance error of the biarc ap-
proximation to the spine curve,

compare with Fig. 4.

ment has been approximated, both with the ratio-
nal and the biarc scheme. The results are shown in
Figure 7. It shows a sweeping surface with 2 x 1
segments which is generated by the rational approx-
imation (a), the comparison between the exact an-
gular velocity of the RMF and its approximations
(b), and the parametric distance error functions (c).
The rational motion consists of two segments of de-
gree 6. This is to be compared with a biarc approx-
imation with 3 biarc segments, i.e., with 6 circular
arc segments. Again, both the rational and the biarc
approximation have a similar data volume.

Clearly, the rational approximation is much
more precise than the biarc one. For the rational
scheme, the distance error along the spine curve is
already in the order of the numerical noise.

Summing up, the rational approximation
method yields a high quality approximation of the
rotation minimizing frame. Unlike the biarc scheme,
it produces a true C' motion, which generates
smooth surfaces also for profile curves which are not
contained in the normal plane of the spine curve. In
addition, the rational scheme can easily be modified
in order to generate sweeps matching more general
data. This is explained in the next section.

Modified RMF sweeping surfaces

In most applications, using only the RMF of a spine
curve will not be sufficient, because the sweeping
surface is then fully determined by a single given po-
sition of the profile curve. Consequently, it is gener-
ally impossible to model closed surfaces with RMF
sweeps. In order to overcome these problems, we
introduce a modification of the RMF.
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(a) Sweeping surface generated by the ratio-
nal approximation to the RMF.

5710 1 2 3

(b) Angular velocity of the RMF (grey), of its
rational approximation (left) and of the
biarc approximation (right).
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t t

(c) Distance error of the rational approxima-
tion (left) and of the biarc approximation
(right).

Figure 7: The rational and the biarc approxi-
mation to the RMF of a helix.

Along with the spine curve, we assume that the
position of the profile curve has been specified by
the designer at some points q(tg), q(t1), ..., q(tm)-
Each position, however, is still assumed to be a
frame of the spine curve, i.e., the z—axis of the
moving coordinate system is to have the same di-
rection as the tangent of the curve. (See Refer-
ences 6, 12 for constructions of even more general
sweeping surfaces.) Under this additional assump-
tion, each position can be described by the angle 3;,
7 =0,...,m, of the rotation around the tangent of
the spine curve, which generates the position from
that of the RMF. That is, the position of the frame
at t = t; is specified by the orthogonal matrix

(o, 8025 a0y (320 0
P a)l  a)| o o 1)
=?/3j)
(13)

cf. (10). The given data is illustrated by Figure 8,
where the given positions of the profile curve have
been plotted along with the z—axes of the rotation
minimizing frame (dotted) and of the modified RMF
(solid).

(=)

=
N

Figure 8: The given profile curves for the
modified RMF sweeping surface.

The modified frame of the spine curve results
from the RMF by a suitable rotation around the
tangent of the curve. Its rotational part is described
by the orthogonal matrix

Rewr(t) Z(B(t)) (14)



with the matrix Rrumr(t) of the rotation minimizing
frame and Z(f3) as in (13). In order to find a suitable
function 8 = f(t), we interpolate the given angles
B; with a natural cubic spline (see Reference 3) with
the knots (¢;);=o,...m- For modeling closed surfaces
one may use periodical splines instead. Also, it is
possible to add multiples of 27 to the given angles,
without altering the given positions. We choose the
angles 3; so that the absolute values of the differ-
ences between adjacent angles is smaller than 2.
In order to increase the accuracy of the rational
approximation, one may wish to insert additional
knots t; into the original knot sequence, where no
associated angles B; are given. These angles can
then be computed by sampling values from the nat-
ural cubic spline that interpolates the given angles.
Now we are ready to generate a rational approx-
imation to the modified rotation minimizing frame.
In addition to the positions (13), we compute the
angular velocities of the modified RMF (14),

Using the above Hermite interpolation scheme (Al-
gorithms 2,3, and 4) we may now find a sextic ra-
tional approximation to the modified RMF. As an
example, Figure 9 shows a sweeping surface which
is generated by the rational approximation to the
modified RMF for the data from Figure 8. The
surface is a NURBS patch with 3 X 1 segments of
degree (6,4).

Clearly, the above—described sweeping scheme
can easily be generalized by allowing the shape of
the profile curve to evolve during the motion. See
References 12, 14 for examples.

ENVELOPED SURFACES

An important task in the simulation of manufac-
turing processes is the determination of enveloping
surfaces of moving objects, for example of the cut-
ter of a milling machine as illustrated in Figure 10.
This section shows how to compute the envelope of
a moving developable NURBS surface covering the
important cases of a moving cylinder or cone.

S =T S T e

Figure 9: Modified RMF sweeping surface.

Figure 10: Milling with a cylindrical cutting
tool.

Moving planes

According to equation (2) it is possible to represent a
plane in three dimensional space by a homogeneous
coordinate vector P € R*. Furthermore we have
seen that a point p lies in the plane P, if the scalar
product P ' p vanishes.

Now consider a spatial rational motion M =
M (t). As noted earlier such a motion is described by
a set of four polynomials dy(t),...,ds(t) and three
rational functions u,(?),...,u3(t). In order to in-
vestigate the trajectory of a plane P in the moving
system, one first has to convert into its dual form
M*. This can be done by applying equation (4) ei-
ther to the above functions or to M itself.

10



We note that the resulting dual rational motion
M* = M*(t) is associated with a dual control struc-
ture analogous to the control structure of M(¢) as in-
troduced in Reference 7. The corresponding control
positions of the motion are described by the constant
coefficient matrices A of M* if M* is converted into
NURBS form. Figure 11 shows the control positions
of a moving dice in red along with the dual control
positions in green. Initial and end position of the
cube belong to both sets of control positions.

Figure 11: Dual control structure of a mov-
ing dice.

At any time instant ¢, the position of a plane P

is given by

P — P(t) = M*(t)P. (15)
The set of all position of P forms a one parameter
set/family of planes P(¢). Such a one parameter
set of planes envelopes a developable surface, which
in general is a tangent surfaces of a twisted curve
¢(t). In non-degenerate cases, the set P(t) is called
the dual representation of ¢(t), and c(t) the line of
regression of P(t), respectively.

In degenerate cases the curve c(t) can also con-
tain pieces of conical, cylindrical or planar surfaces.
As an example, consider the plane

P.y(t) = (—r cos(t) sin(t) 0)7  (16)

for a fixed r. Obviously, P, (t) is parallel to the
z-axis for every ¢. Furthermore the distance of P,
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to the point 0 = (0001) " is equal to r which is a
constant. Hence, Py (t) is the dual representation
of a cylinder of revolution. The axis of this cylinder
is the z-axis of the coordinate system. A similar
argument shows that

P.o(t) = (0 cos(t) sin(t) —tan(a))’  (17)
describes the dual representation of a cone with apex
0=(0001)", direction of axis (0 0 1) and opening
angle 2a.

Dual representations of twisted curves have
been studied extensively by various authors (see
Hoschek*, Pottmann and Hoschek!'!, Bodduluri and
Ravani') in the context of developable surface de-
sign. The most straightforward way to obtain c(¢)
from P (¢) in the NURBS case, is to split the NURBS
representation of P(¢) into its rational parts and
apply the algorithm of de Casteljau to convert the
individual segments (see Pottmann'®). This proce-
dure is outlined in Algorithm 5. A similar technique
was used in Reference 7 for computing the control
positions of a rational motion. Alternatively, one
could also use product formulae for B-spline basis
functions. Due to the complexity of these products,
however, the latter approach is only useful for theo-
retical purposes.

It has to be noted that Algorithm 5 assumes
that the all segments of P(t) are tangent surfaces
of twisted curves. In order to make the implemen-
tation stable one in addition has to check for de-
generate cases for each individual segment. Further
notice that line of regression ¢(¢) and correspond-
ing dual representation P(¢) are dual to each other.
Consequently, Algorithm 5 can also be used to cal-
culate P(t) from c(¢). One simply has to call the
algorithm with ¢(¢) as input. The corresponding
output will be P(t) (see Pottmann'?).

Moving developable surfaces

In general one is not interested in the motion of a
single plane. One rather needs algorithms which al-
low the computation of enveloping surfaces of mov-
ing objects. In Reference 7 it was shown how to com-
pute the enveloping surface of a moving polyhedra.
In the sequel we will extend these ideas and describe



Algorithm 5:
Computation of the line of regression c(t) of a piece-
wise rational one parameter set of planes P ().
INpuT: NURBS representation of P(t);
Convert P(t) into Bézier spline form by repeated
knot insertion (see Reference 5), this results in N
Bézier segments
P(r) = X7y BI(r)Qiyj = 0,..., N~ 1
of degree n.
for ¢ from0 to N —1 do

for j from 0 ton do

7 n— -1
dj = (6( j 1)) Za+b+c:j ' . .
() G ) Qe x Q) x Qi

¢i(r) = S Y B (n)d:
od;
The exterior product of the vectors QZ, Qf,, Qi is de-
fined by

air b1 a by ¢
AxBxC= az b2 Cy |,— | Q2 b2 c |,

as bs c3 az by c3

ag b() Co ag b(] Co

ag b a|,—|a b a

as b3 C3 az by co )

Collect all segments in a single NURBS curve c(t)
and remove all redundant knots;
OutpuT: NURBS representation of ¢(t).

the computation of the envelope of a moving ratio-
nal developable surface. As mentioned above, these
surface type includes cylinders and cones of revolu-
tion. It are these degenerate cases which makes the
following study important for practical applications.
Let us consider a rational developable surface

(18)

in dual coordinates. This surface f’(s) is assumed to
lie entirely in the moving space. Its NURBS repre-
sentation (18) is given in terms of its knot vector and
a set of m + 1 control planes Qj. If P(s) is moved
according to a rational motion M (¢) with dual rep-
resentation M*(t), all positions of all planes of P(s)

form a two parameter set of planes

~

P(s,t) = M*(t) P(s) (19)

which is rational in s and ¢. Therefore, P(s,t) de-
scribes the dual representation of a tensor prod-
uct (TP) NURBS surface ¢(s,t) (cf. 3). There are
various ways how P(s,t) can be converted into its
point representation ¢(s,t). The most straightfor-
ward method results from intersecting the plane
P(s,t)|s=s0,t=t, With the first derivative planes in s
and t direction, i.e.

0 0
%P(Sat”b’:so,t:to’ ap(sat”s:So,t:tO'

In analogy to algorithm 5 one first has to convert
P(s,t) into an array of TP Bézier patches. Each in-
dividual patch then has to be converted into point
form. After collecting all resulting Bézier patch one
finally has to collect them in a single TP NURBS
patch and delete all redundant knots. Alternatively,
P(s,t) can also be converted into point form c(s, t)
by applying algorithm 5 twice, once in s and a sec-
ond time in ¢ direction. This, however, requires the
application of symbolic computational methods.

Figure 12: Envelope of a moving cylinder of
revolution.

Notice that the developable surface P(s) is con-
sidered to extend infinitely. If one wants to prescribe
bounds, such as top and bottom circle of a cylinder,
one has to use methods similar to the one developed
in Reference 7 for calculating the enveloping surface
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of a moving polygon. Figure 12 shows an example of REFERENCES

a surface patch enveloped by a moving cylinder. For
a fixed ¢t = to, the curve c¢(s,ty) contains all points
at which the moving surface touches its envelope.
This curve is called the characteristic curve of the
position

A~

Piy(s) = M(to) P(s)

of the moving surface at time instant ¢;. A set of
such parameter lines is illustrated in Figure 13.

Figure 13: Set of characteristic curves on the
envelope.

Although the computation of such envelopes is
rather straightforward, exact methods lead to a rel-
atively high degree of the TP NURBS representa-
tion. A cylinder which is subject to a rational mo-
tion of degree 6 as constructed earlier in this paper
will generate a dual TP product surface of degree
(6,2). It is easy to see that converting this sur-
face into an ordinary TP NURBS surface will in-
crease the degree to (16,4). One way to overcome
this problem is to approximate the resulting surface
by a surface constructed from appropriate patches
such as a piecewise Coons surface. The information
about the tangent planes can be obtained directly
from P(s,t). Points on the surface on the other
hand can be computed using de Boor’s algorithm as
mentioned in Reference 10.
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