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Abstract: In geometric design, rotation minimizing frames of space curves
are used for sweep surface modeling. We give a detailed discussion of these
motions within the framework of spherical kinematics. In addition we dis-
cuss their approximation by rational spline motions. The results are applied
to the automatic generation of robot motions from CAD data and to the
construction of sweeping surfaces.

1. Introduction

Rotation minimizing frames (RMF') of space curves are used for sweep sur-
face modeling in computer aided design. They are characterized by the fact,
that the normal plane of the curve rotates as little as possible around the
tangent. In geometric design, RMF of space curves have been introduced by
Klok (1986), who derives a piecewise linear approximation of the resulting
sweeping surfaces. A more sophisticated approximation (consisting of sur-
faces of revolution) has been developed by Wang and Joe (1997). A recent
manuscript by Pottmann and Wagner (1998) gives a thorough geometric
discussion of RMF and sweeping surfaces.

In the present paper we discuss RMF in a kinematical setting. Given a
spherical trajectory, we ask for the rotation minimizing motions (RMM)
among the possible spherical motions. If the spherical trajectory is gener-
ated by the unit tangent of the curve, then the resulting motion will be the
RMF of the curve.

We derive a characterization of RMM by their angular velocity. Using the
kinematical mapping of spherical kinematics, it is shown that RMM corre-
spond to special curves on Clifford—left—cylinders in elliptic 3—space. Based
on quaternion calculus, we develop a scheme for approximating rotation
minimizing frames with rational spline motions. We use quaternions as
they are computationally efficient and particularly well suited for the con-



struction of rational motions. The final section discusses the application of
RMM to sweep surface modeling and to the automatic generation of robot
motions from CAD data.

2. Rotation Minimizing Motions

Throughout this paper we consider a given curve segment z = Z(t), with the
parameter ¢ € [0, 1], on the unit sphere S? C R?, i.e. | 7]|? = 22 +25+22 = 1.
The three components of Z(t) = [21 2o 23] are assumed to be C' functions.
This curve can be considered as the trajectory of the point &3 = [0 0 1]
which is generated by a spherical C''~motion, cf. (Bottema and Roth, 1979).
That is, one can easily find a one—parametric system of special orthogonal
matrices U = U(t) which satisfy

Z(t) =U(t) e (1)

and whose components are C'! functions. The third column of the matrix is
formed by the components of the given curve Z(¢). Of course, the spherical
motion U(t) is not uniquely determined by the condition (1). Once a motion
U(t) has been found, it can be composed with arbitrary rotations around
the €3—axis of the moving system. Any other spherical motion V' = V()
satisfying (1) can be represented as V (t) = U(t) Z(t), with

cos p(t) —sing(t) 0
Z(t)= | sing(t) cose¢(t) 0 |, (2)
0 0 1

where the angle ¢ = ¢(t) is a C! function.

The velocity of an arbitrary point 5y € IR? is governed by the angular
velocity of the motion. Let p(t) = U(¢) pp be the trajectory of py which is
generated by the spherical motion U(t). The velocity of the point on this
trajectory is p = @ x J, with the angular velocity & = G(t) = (w1 wg ws]"
of the spherical motion U(t), where " = %. Resulting from = UU'p,
the angular velocity can easily be found from the skew—symmetric matrix
UU', see (Bottema and Roth, 1979).

A short calculation leads to the angular velocity 7 of the spherical motion
V(t) = U(t) Z(t); it is the sum of the individual angular velocities,

i(t) = @(t) + ¢ Z(t). ©)
Definition. The spherical motion U = U(t) will be called a rotation mini-
mizing motion (RMM) with the trajectory Z(¢), if its angular velocity is as
small as possible for all ¢ € [0,1], that is, if it minimizes the integral

/ 13(0)| dt. 4)
0



Due to ||Z(t)]|2 = 1 we get (Z(t), Z(t)) = 0, hence Z = (Z x ) x Z. That is,
if a spherical motion U(t) generates the trajectory Z(t), then its angular
velocity must be of the form & = (2 x 2) + ((t) Z with an arbitrary C°
function ((¢). In consequence of (3) and of the above observation one has:

Proposition 1. The spherical motion U (t) is a rotation minimizing motion
with the trajectory Z(¢) if and only if its angular velocity is

() =2 x Z. (5)

Proof. Assume that the spherical motion U(t) satisfies (5). Consider the
angular velocity (3) of the motion V' = V(¢). In consequence of

. . . 1 1
12x7+¢ 2 > x| we have / 7] dt > / @il dt,  (6)
0 0

where ‘=" holds if and only if c;S =0, as ¢ and Z were assumed to be C*

functions. This proves the assertion. ]

Corollary 2. The rotation minimizing motion U(t) with the trajectory
Z(t) does not depend on the choice of the parameterization of the given
spherical curve Z(t).

Proof. Consider a regular C' parameter transformation ¢ = #(s) of the
given spherical curve Z(t). Let ' = d%. The angular velocity & * with respect
to the new parameter s is @* = /(s) @ = ¢/(s) Zx Z = Z x Z'. Hence, the
RMM which is associated with the given spherical curve Z(t) is invariant
with respect to regular C' parameter transformations. ]

3. Quaternion representation of RMM

Unit quaternions can be used in order to describe rotations, see (Bottema
and Roth, 1979). For any rotation matrix U one may find a unit quaternion
Q@ = (40, 91,92, g3) such that the equation U gy = @ * p * Q holds for all
vectors py € IR?, where ‘¢’ is the quaternion multiplication and Q is the
conjugate quaternion'. The components gy and g1, g2, g3 are the real and
the imaginary parts parts of the quaternion @), respectively. Any rotation
matrix U can be identified with a pair of antipodal points +¢) on the unit
sphere 83 C IR*. A spherical motion U = U(t) corresponds to a pair of
antipodal curves +Q(t) C S3.

A short calculation leads to the angular velocity of the spherical motion,

@(t) =2 Q(t) * Q(¢), hence 3] = 2| (7)

1The vector fo = [po,1 po,2 po,3]" is identified with the quaternion (0, po,1,Po,2, Po,3).



By combining this equation with the result of Proposition 1 one gets a
differential equation for the unit quaternion representation of the RMM
which is associated with a given spherical trajectory Z(t).

Using quaternion calculus we may reformulate the condition (1) as

Z(t) = Q) * &+ Q(1), or Z(t) * Q(t) = Q(t) * &. (8)

The latter equation forms a system of homogeneous linear equations for
the components of the quaternion Q(t). Hence, for any fixed parameter
value ¢ € [0, 1], the feasible quaternions (which correspond to the rotation
matrices V (t)) form a great circular arc on S C IR*, as a great circular
arc on S is the intersection of a 2-plane through the origin of IR* with the
unit sphere S3.

For t varying in [0, 1], the feasible unit quaternions form a 2-dimensional
surface ® C S3, whose parameter lines ¢ = constant are great circular arcs.
(Note that the possible great circular arcs on S? belong to a special family
of arcs on S2. Using elliptic geometry, a characterization of this family is
given below.) Let Cy and C; be the great circular arcs (8) for the first point
t = 0 and the end point ¢ = 1 of the given spherical curve Z(t).

Owing to (7), the integral (4) is twice the arc length of the unit quaternion
curve Q(t). Hence, the RMM correspond to the shortest curve on the 2—-
surface ® C S3, which runs from a fixed point on the arc Cy to the last
arc C1. Due to Proposition 1, this curve intersects each of the great circular
arcs (8) at a right angle. This can concluded from (7) and from the fact, that
the spherical motion, which is described by one of the great circular arcs
(8), is a rotation around the axis Z(t), i.e., its angular velocity is linearly
dependent on Z(t).

4. RMM in elliptic 3—space

A more geometric interpretation of RMM can be given with the help of the
classical kinematic mapping of spherical kinematics, see (Miiller, 1962). Any
rotation matrix U is identified with the point with homogeneous coordinates
AQ (X # 0) in elliptic 3-space E3. The great circular arcs on S® (which
describe spherical motions with fixed axis) correspond simply to lines in E3.
In addition it turns out, that the great circular arcs (8) correspond to lines
which are all left—parallel with respect to the so—called Clifford parallelism
in elliptic 3-space, see (Miiller, 1962). Hence, the 2-surface ® can be seen
as a Clifford—left—cylinder in F3. The rotation minimizing motions U () can
be identified with the shortest curves (with respect to the elliptic metric)
on the cylinder surface ®, which run from the first generating line Cj to
the last generating line Cy of ®. These curves intersect the generators (8)
at right angles with respect to the elliptic metric.



5. Approximate computation of RMM

Any spherical curve Z(t) can be approximately converted in a so—called biarc
spline curve. That is, we can always find a sequence of circular arc segments
(€i(t))i=1,..n (n even) on the unit sphere S? C IR3, which approximates
the original spherical curve Z(t) as good as desired. The i—th segment has
parameters t € [t;_1,t;], where the knots 0 =ty < t; < ... < t, = 1 define
a partition of the parameter interval [0, 1]. The circular spline curve which
is obtained by collecting the segments &;(t) is a C'! curve. At the knots with
even indices 7, it matches the points Z(¢;) and the first derivative vectors
Z(t;) of the original curve Z(t). That is, each pair of adjacent G' Hermite
data is interpolated with a so—called biarc. For any details concerning the
construction of biarc spline curves we refer to the textbook (Nutbourne
and Martin, 1988). Note that the results on planar biarcs can easily be
transferred to the spherical setting via stereographic projection.

We compute the RMM for one segment of the circular spline curve. The
RMM of the whole spline curve can then be found by collecting the indi-
vidual segments. Consider the segment

c(t) = [ sin() cos(tp) sin(¢p) sin(tg) cos(t)) ]T, te[0,1], (9)

of the parallel of latitude 7 — ) on the unit sphere S?, where ¢ is the total
angle of the arc segment. By changing coordinate systems, any circular arc
segment on S? can be described in the above standard representation with
suitable angles 1 and ¢.

The RMM which is associated with (9) can be computed explicitly. Its
quaternion representation is given by Q(t) = Q1(¢) * Q2(t) with

Qi(t) = (cos % cos %, —sin % sin %, cos % sin %, cos % sin %) )
Q2(t) = (cos Lo cosytp — ¢+p, 0,0, —sin Lo cosptp COQS’H”) . (10)

The constant angle p specifies the initial position of the moving system.
From (7) and (10) one gets the angular velocity

& = [~ cos(tp) ¢ sinep costp —sin(td) ¢ sinep cosyp —¢ cosZph + @]
(11)

which satisfies the condition & = &x & of Proposition 1. The spherical motion
Q(t) is spherical trochoidal motion. That is, the fixed and the moving axode
of the motion are circular cones.

6. Rational approximations

Rational approximations of RMM are useful for applications in geomet-
ric design, cf. next section. We want to approximate the spherical motion



Q(t) = Q1(t) * Q2(t) with a so-called rational motion, where all trajectories
are rational curves, see (Juttler and Wagner, 1996; Wagner and Ravani,
1997). As a major advantage of rational motions, they are compatible with
the standard curve and surface representations of CAD systems.

A rational representation of a spherical motion can simply be constructed
from the unit quaternion curve

Q) = ———R(t) with |Rl=\/r3+r2+r3+r3,  (12)
IRl

by choosing the the components of the quaternion R = (rg,71,72,73) as
polynomials. The rotation matrix U(t) of the corresponding spherical mo-
tion can easily be computed from UZy = Q * Zy * Q, see (Bottema and
Roth, 1979; Juttler and Wagner, 1996). Its components are quadratic ra-
tional functions of the components of the quaternion R.
Firstly we consider the spherical motion Uj(t) which is described by the
unit quaternion curve Q1 (). A rational quadratic approximation to U; can
be found by choosing the linear quaternion curve

R1(t) = (1 — t) Bl,o + tBl,l (13)

with the quaternions

Bl,():’w() Q1(0)2w0 COS%, O, Sin%, O) and

_ — [ Y _ain®ain? D in? qin @ P
By 1=w; Q1(1)=w (cos § cos &, —sin§ sin 5, cos § sin %, sin § cos 5 ) .

The positive weights wg, w; € IR can be chosen arbitrarily, for instance
wg = wy = 1. The quadratic rational motion which is obtained from the
linear quaternion curve (13) describes exactly the same spherical motion
as QQ1(t), but with a new parameterization. That is, we have Q1 (7(t)) =
Ri(t)/||R1(t)||, where 7(t) is a monotonically increasing reparameterization
function with 7(0) = 0 and 7(1) = 1. This is due to the fact that Q1(¢)
is a great circular arc on S3 C IR*; it describes a uniform rotation with
constant axis.

Similarly we could find a quadratic rational representation for the second
spherical motion (Q2(t). This would produce an exact representation Ry () of
this motion with another reparameterization function 7(t), i.e., Q2(7(t)) =
Ry (t)/||R2(t)||- Hence, the composition R(t) = Ri(t) * Ra(t) is not the
original motion Q(t), as the reparameterization functions 7(t) and 7(¢) are
generally different. That is, in general we are unable to find an exact rational
representation for Q(t).

As a theoretical result, an exact rational representation of Q(¢) can be
found if and only if cos is rational. This, however, may lead to rational
motions of a rather high degree which are not suitable for applications.



In order to bypass this difficulty, we propose the following approximate
solution. Let R;(¢) as in (13), and let R(t) be the quadratic quaternion
curve

Ro(t) = (1 —t)? B +2t(1 —t) By + t2Bas (14)

with the quaternions?

B2,0 = Wy Q?(O) = Wo (13 Oa 07 0) )
By — 1 : @ ¢ cos P s ¢ cosy N
2,1 = 5 8in § cos 9 ( (wo + wy cos =5-+) /sin &2+, 0,0, —w |,

Boo = wiQ2(1) = wy (cos %S(w), 0, 0, —sin w> (15)

This leads to a rational spherical motion of degree 4 which approximates the
spherical motion Q2(t). The resulting spherical motion which is obtained
from the quaternion curve R(t) = R;(t)* Ry(t) has the following properties.

1.) It is a rational spherical motion of degree 6 which approximates the
RMM Q(t) = Q1(t) * Q2(t). It satisfies approximately the condition of
Proposition 1. That is, for each ¢, the angular velocity is almost perpendic-
ular to &(t).

2.) The trajectory of the €3 is the spherical circle ¢(¢), but it is now traced
with the rational parameterization

(1 — t)27‘0 g() + 2t(1 — t)r1 51 + t27‘2 52

c*(t) = 16
¢ ( ) (1 - t)2’r‘0 + 2t(1 — t)’r‘l + t2T2 ( )
where
. sin . sin 1 . sin cos ¢
bo = 0 |,bi=| tanZsing |, b= | sinysing |,
cos Y cos Y cos Y (17)

and rg= w%, T1 = Wow1COS 5, T = w%.
In addition, the end positions t = 0,7 = 1 of R(t) and Q(¢) are identical, as
R(0) =wgQ(0) and R(1) = wiQ(1). (18)

3.) For t = 0 and ¢ = 1, the angular velocity of R(t) is perpendicular to
&(t). Thus, the angular velocity at the segment end points has the exact
value, as derived in Proposition 1.

If the weights wg and w, are already given (this is the case in the application
of section 7.1), then the last two conditions leave one degree of freedom for

2These formulas are valid for p = 0 only. The coefficients for arbitrary p are obtained
by multiplying the above quaternions with (cos 5, 0, 0, —sin £).



choosing the coefficients of (14). We have fixed this parameter such that
the heuristic conditions wg = [|R1(0)|| = ||R2(0)|| and w1 = ||[R:i(1)] =
||R2(1)|| are fulfilled. The accuracy of the resulting rational approximation
R(t) = Ry(t) * Ra(t) to Q(t) = Q1(t) * Q2(t) should be sufficient for most
applications; it can be improved by increasing the number of segments of
the biarc spline which approximates the given spherical trajectory Z(t),
cf. Section 5.

7. Applications and Examples

Finally we outline two applications of rotation minimizing motions.

7.1. ROTATION MINIMIZING FRAMES FOR SPACE CURVES

Consider a spatial curve § = 3(¢). Its hodograph (also called the spher-
ical indicatrix of tangents) is formed by the unit tangent vectors Z(t) =
5(t)/|18(®)||. Let U(t) be the associated RMM as defined in Section 2. The
spatial motion which is described by the mapping

Po — p(t) = 5(t) + U(t) o (19)

is called the rotation minimizing frame (RMF) of the given space curve, see
also Section 1. This frame is used for modelling sweep surfaces in geometric
design applications. According to Corollary 2, its definition is independent
of the parameterization of the given space curve. In order to find a rational
approximation to the RMF, we proceed in two steps.

1.) Firstly we convert the given curve §(t) approximately into a new curve
§*(t), whose hodograph Z*(t) = §*(t)/||$*(t)|| is a sequence of circular arcs.
This can be done by constructing a sequence of so—called Pythagorean—
hodograph (PH) cubics (Farouki and Sakkalis, 1994) via interpolation of
G' Hermite data (points + tangents) sampled from the original curve.
The details of such a procedure have been described by Wagner and Ra-
vani (1997). The hodograph Z*(t) is a C° circular spline curve on the unit
sphere.In addition to the results in (Wagner and Ravani, 1997) it can be
shown, that it is possible to convert the given space curve 3(¢) into a PH
cubic spline curve with any desired accuracy, provided that it has non-—
vanishing curvature everywhere. The proof of this fact will be presented
elsewhere.

2.) Secondly we construct — for each circular arc — a rational approximation
of the RMM as described in the previous section. Note that the overall
RMF of §*(t) is a C° motion in general, because the hodograph z'*(t)
is not guaranteed to be tangent continuous. Nevertheless, the trajectories
of points travelling in the normal plane of 3*(¢) are tangent continuous,



Figure 1. RMF of a space curve (left) and sweeping surface (right).

because the angular velocity of the RMF is always orthogonal to the tangent
of the curve, cf. Proposition 1. Owing to their property 3.) (Section 6), the
rational approximation preserves this order of continuity.

The rational approximation of the RMF can be used in order to find rational
(i.e., NURBS) representations of sweeping surfaces which are generated by
moving profile surfaces. The space curve §*(t) is called the spine curve. As
an advantage over the method of Wang and Joe (1997) who use a circular
spline, in our method the spine curve can be a true space curve. This is
helpful in order to keep the number of segments relatively small.

An example is depicted in Figure 1. The spine curve (in black) is a PH
cubic spline curve with 5 segments. The left figure shows the RMF; it is
visualized by the unit vectors U(t) & and U(t) € which span the normal
plane of the curve. An example of a sweeping surface has been plotted on
the right—hand side. It is a NURB spline surface of degree (9,3) with five
segments. In order to illustrate the accuracy of the rational approximation
to the RMM, Figure 2 shows the angle be-  .ge
tween the real angular velocity and the curve  *°%
tangent for one segment of the PH cubic
spline curve. Ideally, these vectors would al-
ways be perpendicular, according to Proposi-
tion 1. For the rational approximation (where

90.01

90
89.99
89.98

89.97

¢ = 94.7° and ¢ = 81.3°), the angle varies 0 o0z 04 06 08 1 t
between 89.966° and 90.026°. Hence, there is ' .
very little deviation from the RMM. Figure 2. Plot of Z(Z,&).

7.2. GENERATING ROBOT TRAJECTORIES FROM CAD DATA

In order to automatize the process of robot programming, a forthcoming
task will be the direct use of CAD data, as far as this is possible. For



instance, such data can be used in order to specify the path of the tool
center point of the robot. However, data from CAD systems usually does
not contain any information about the orientation of the end effector.

In many applications, the direction of the tool vector is determined by
certain process requirements. For example, in spraying applications the
spray gun should be perpendicular to the surface of the workpiece, in or-
der to make the spraying as uniform as possible. This leaves one degree of
freedom for the orientation of the end—effector.
As a natural solution, one should use rota-
tion minimizing motions in order to design the
robot motion. This solution can be found with
the help of the methods from Sections 5 and 6.
As the result we get a rational spline motion of
the end effector with the minimum angular ve-
locity. Rational spline motions are suitable for
robot control. They are being used successfully
within a commercial environment (Horsch and
Juttler, 1998).

An example is shown in Figure 3. The pre-
scribed directions of the tool vector are repre-
sented by the dotted lines; they are perpendic-
ular to the trajectory of the tool center point
(solid curve). The RMM of the end effector is p, gure 3. Rotation minimizing
visualized by the moving box. motion.
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