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Abstract

The present paper discusses rational curve segments and surface patches on
quadric surfaces. Detailed constructions of rational Bézier patches from given
boundaries on the unit sphere and on the hyperbolic paraboloid are presented
based on a generalization of the stereographic projection. The method is applied
to the interpolation with rational curves on quadrics. The results are extended
to rational B-spline representations by discussing products of B-spline functions.
Finally, the generalization of the constructions to arbitrary nondegenerated

quadric surfaces is outlined.
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Introduction

Most of Computer-Aided Design systems describe surface patches by polynomial or ratio-
nal parametric representations. As an important advantage, rational representations (e.g.
NURBS-curves and -surfaces) support the exact representation of quadric surfaces (like spheres,
ellipsoides, hyperboloids of one or two sheets, elliptic and hyperbolic paraboloids) which tra-
ditionally play an important role in industrial applications. Several authors have developed
different constructions of rational patches (especially of rational Bézier surface patches) on
quadric surfaces 1 =7. The present paper is based on an algebraic approach introduced in
Hoschek & Seemann ’92 8. That approach has led to a generalization of the stereographic
projection on quadric surfaces. New results concerning biquadratic Bézier surface patches on
quadrics and surface patches on quadrics whose boundaries are conic sections have been de-
rived with help of this generalized stereographic projection in Dietz et al.’93 9. Additionally,
interpolation of given points with rational curves on the sphere has been shown to be a linear
problem.

This paper applies the above results and presents detailed constructions of rational Bézier
and B-spline surface patches on quadric surfaces. First of all, some notations from projective
geometry are introduced. Section 2 and 3 discuss rational patches on the unit sphere and on
the hyperbolic paraboloid, respectively. Section 4 deals with rational B-spline representations

on quadrics. Finally, section 5 extends the obtained results to arbitrary quadrics.

1 Notations

The scene of the following considerations is the projectively closed three-dimensional real
Euclidean space E3. Its points (a, b, c, ...) and planes (&, b, &, ...) are described by
homogeneous coordinate vectors from IR* (see e.g. Coxeter’64 10). The point a lies on the
plane b iff (a,b) = 0 holds. (The symbol (-,-) denotes the usual inner product of vectors.)

The cartesian coordinate vectors of (finite) points are a, b, ¢, ... . They result from dividing

by the 0-th components:

bo
1 [P p
p = —| p where p = ! . (1)
- bo b2
ps3
b3

Thelines (1 A 0 0)',(1 0 g 0)Tand(1 0 0 v)" (A pu,v €IR) are the z- , y-

and z- axis of the coordinate system, respectively.
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Consider a point p = (pop1p2ps)'. The abbreviations

p =( po -po —-p3s p2 ),

1 o _ o T

p = ( b3 P2 b1 Do ) )

N T

p = ( —PpP2 —P3 Po P1 ) )

p = ( ppo m 0 0 )7, (2)
p* = ( 0 0 p p3 ),

PP = ( pp -po O 0 )T and

p* = ( 0 0 —p3 pp )"

are introduced in order to simplify notations.
Let B # O be a symmetric (4,4)-matrix. The set of all points x satisfying x' Bx = 0 forms

a quadric. The equations x'Ux =0 and x' H x = 0 with

1 0 0 0 00 0 1
0 -1 0 0 0 —-10

U= and H = (3)
0 0 -1 0 -1 0
00 0 -1 1 0 0

describe the unit sphere and the (normalized) hyperbolic paraboloid, respectively.
The symbols p=aVbVcand p=aA b A & denote the plane spanned by three points and
the intersection point of three planes, respectively. The coordinates of p resp. p are

a; a a

;= (—1)'det | b; b b

pi=(-1)"de i Ok O (4)
¢ Cp q

Where (i7j7 k? l) E {(07 1,273,)7 (1727 3’ 0)7 (2’3707 1)7 (3’ 0’ ]‘72)}'

The use of homogeneous coordinates allows a very compact description of rational curve
segments and surface patches: For example, a rational Bézier surface patch of degree (m,n)
is given by

m n

2
x(u,v) =Y Y Bi*(u) B} (v)bi;  ((u,v) €[0,1]) (5)

i=0 j=0
with the Bernstein polynomials B} (t) = ("7)t'(1—¢)™ " and the homogeneous control points
b;; (see e.g. '1). A rational B-spline surface patch results from (5) by replacing the Bernstein

polynomials with B-spline basis functions N; x(%).
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2 Rational patches on the unit sphere

This section discusses rational patches on the unit sphere x' Ux = 0. The set of all points
of this sphere is denoted by U. The letter P means the set of all points of the equator plane
of the unit sphere (p3 = 0).

2.1 The generalized stereographic projection

The stereographic projection is a standard method for the construction of surface patches
on quadric surfaces (see e.g. Geise & Langbecker’90 4). Let z denote the point (1001)T, i.e.
the “north pole” of the unit sphere. The line connecting an arbitrary point p € P with z

intersects the unit sphere in exactly two points: in z and in a second one o(p) where

p§ + i +p3
2pop1
o(p) = : (6)
2pop2
pi +p3 — 15
The map o : p € P — o(p) € U is called the stereographic projection with centre z on the

unit sphere (see fig. 1). Its inverse map o~ : u € U — o~ !(u) € P is given by

o lu)=( uwo—us u uy 0 ). (7

The stereographic projection ¢ and its inverse map preserve circles 12. The image of a circle
or line on P under o is a circle on U.

The image of a bilinear rational Bézier patch on the plane P under o is a biquadratic Bézier
patch on the unit sphere U. But stereographic projection does not yield all biquadratic patches
on U as images of bilinear Bézier patches. (A counterexample can be found in Fink’92 7.)
The generalized stereographic projection § : e € E3 +— §(e) € U where

eg+el+es+ e}

26061 - 26263

d(e) = (8)

2e1e3 + 2epes
el +e3 — el — e}

avoids this disadvantage 9. Any irreducible rational Bézier patch of degree (2m,2n) on the
unit sphere U can be obtained as image of a patch of degree (m,n) in E3 under 6.
The hyperbolic projection 9 : e € E3 + J(e) € P where

e% + e%
'19(6) _ €p€e1 — €9€3 (9)

eirez + epeo
0
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Figure 1: The generalized stereographic projection § on the unit sphere

has been introduced in Dietz et al.’93 ? in order to discuss the properties of the generalized

stereographic projection. Some of these properties are:

(U1)

(U2)

The generalized stereographic projection § is the composition of the hyperbolic projec-
tion ¥ with the stereographic projection o: § = o o 9 (see fig. 1).

The set of all inverse images of a point p € P under ¥ (and so of a point u € U with

p = o !(u) under 6) forms the line
A+ pgt (A p€eR) (10)

where q is an arbitrary preimage of p under 1, for example q = p.

The lines Aq+uq’ (A, 1 € IR) are called the projecting lines of the hyperbolic projection.
Each one of them passes through its image under ¥ and is perpendicular to the line
connecting its image under ¢ and the origin. An arbitrary rotation around the z-axis
maps projecting lines to projecting lines. Figure 2 shows the projecting lines of the

hyperbolic projection.

The inverse image of a circle on P under ¥ (and so of a circle not passing through the
centre z on U under §) is a one-sheet-hyperboloid. The inverse image of a line on P
under 9 (and so of a circle through z on U under ¢) is a hyperbolic paraboloid.

These one-sheet-hyperboloids and hyperbolic paraboloids carry two systems of lines
(generators). The first system consists of projecting lines (10) of . The lines of the
second system will be called the conjugated lines with respect to the first system. The

image of a conjugated line under 1 is the given circle on P.
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Figure 2: The projecting lines of the hyperbolic projection

(U4) The image of a given non-projecting line under ¥ is a circle or a line on P. Thus the

image of a given non-projecting line under § is a circle on U.

(U5) Any plane E in E? contains exactly one projecting line Lg. Consider two distinct non-
projecting lines L1, Ly on the plane E. Their images under 4 resp. § intersect in the
two points ¥(L; N Le) and ¥(Lg) resp. in §(L; N Ly) and §(Lg). If L and Lo intersect
on Lg, then the tangents of their images under ¢ resp. § at 9(Lg) resp. §(Lg) coincide.

The hyperbolic projection is a special net projection. Its projecting lines form an elliptic
linear congruence of lines (see fig. 2). Linear congruences of lines and net projections have

been studied in advanced geometry 13 14

2.2 The construction of Bézier patches from given boundaries

This section applies the discussed projections to the construction of spherical surface patches.
The case of triangular surface patches has been outlined in 2, here we will focus on the

tensor-product case.

The biquadratic Bézier patch. Every rational biquadratic Bézier patch lying on the unit
sphere U can be generated with help of the generalized stereographic projection ¢ (see (8)). A
rational bilinear patch can be found yielding the desired biquadratic patch when it is mapped
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onto the unit sphere by d.

Because the boundaries of a biquadratic patch are plane curves, they are circle segments when
lying on U. The four boundary circles intersect in the patch corners — which we will call
P1, P2, P3 and p;, — and in four additional points q;,qs,qs and q,. The point q; stands for
the second intersection point of the two circles passing through p,.

Suppose, the four patch corners and boundary circle segments are given. The question is,
whether there is always a biquadratic Bézier patch interpolating the desired boundaries and
— if so — how its homogeneous control points can be constructed.

In Dietz et al.’93 9 it has been shown that the boundary circles of a biquadratic patch on U

cannot lie arbitrarily, but always fulfill the following condition:
e The four points p;, p3,qy and q, (or equivalently py, py,q; and qs) are coplanar.

Thus, we have to ensure that the given boundary circles satisfy the stated condition, i.e.

det(p1, P3,92,94) =0, (11)

otherwise the desired patch cannot be constructed and a patch of degree (2, 4) has to be used.
We may define the boundaries by prescribing three points for each one, e.g. p;, py and u; for
the first boundary and so on for the others. Then the second intersection points q; have to
be constructed first.

For regularity of the considered patch we will assume the points q;,q9,q3 and q4 not to lie

on the patch boundaries. Now, we have to find a rational bilinear Bézier patch
y(u,v) = By(u) By(v) €1 + By () By(v) ¢2 + By (u) B (v) €3 + Bi (u) B (v) s

which is mapped to a biquadratic patch x(u,v) with the given corners and boundaries.
Consider the preimages under ¢ of the specified boundary circles on U. They are four doubly
ruled surfaces, namely one-sheet hyperboloids or hyperbolic paraboloids (cf. (U3)), which
intersect in the four projecting lines 6~1(p;),...,0 *(p,) (see (10)). The points c1,...,c4
have to lie on these lines, and the connecting lines of two neighboured control points must be
conjugated generators of the corresponding doubly ruled quadric (U3).

One of the corner points, e.g. c;, can be chosen arbitrarily on the projecting line 6! (py).
Then the point ¢ has to be determined so that the line segment B} (u) ¢1+Bi (u) ¢z (u € [0,1])
is part of the conjugated generating line through c¢;. Because the boundary circles of the
spherical patch should not pass through the second intersection points, that line segment
additionally must not pass through the line §7!(qs). Analogously, the points c3 and ¢4 can
be determined with help of the given second and third boundary circle.

Since condition (11) holds, the line segment between ¢4 and ¢; is automatically part of a

conjugated generator of the fourth preimage quadric. It may pass through the projecting
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Figure 3: The construction of the control point ¢;41

line §~'(q,), so that the fourth boundary circle passes through q,, or may not. This can be
examined in the individual case. There does not exist a Bézier patch with the same first three
boundary circle segments but complementary fourth boundary to the patch just constructed!
A sufficient condition for the existence of a Bézier patch with four specified circle segments
can be given as follows: the segment from p; to p; of the circle through p,, p3, 93 and q4
has to pass through either both or none of q, and q,.

The construction of the biquadratic Bézier patch is summarized by the following algorithm:

Given: Corner points p;, Py, P3, P4 and second intersection points q;, qs, q3, Q4 on
the sphere U.

e Determine preimages under ¢ of the given points (cf. U2), i.e.
ri:=0"'(p;) €57 (p;), siz=0'(q) (see (7).

e Choose ¢ := ry.

e Calculate the planes V; containing c¢; and the projecting line (5_1(q]-), where q; is a
second intersection point belonging to the current boundary curve ( (i,7) € {(1,2),
(2,2), (3,4)} ). The line 6~'(q;) is the connecting line of s; and st (see (2), (10)).
Then intersect ¥; with the preimage line §~!(p,,) of the endpoint of the boundary
circle segment to obtain the control point ¢;1, see Figure 3. The line § '(p,,;) is the

intersection of the planes ;1 and f‘iﬁ_l.

\Afl:C1VSQVSé_ \ArgchVSQVSQL \?32C3VS4VS4L (12)
Co=ViAPaATy  c3=VoAR3ATy  ci=V3ARg AT

The line passing through ¢; and c¢;41 (i = 1,2, 3) is a conjugated generating line of the
doubly ruled surface which is mapped to the specified boundary circle by 4.
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Figure 4: The general biquadratic patch on the unit sphere

e Adjust the signs of the control points so that the boundaries of the spherical patch do
not pass through q,...,qs, and scale them to a length of 1 so that the weights of the
corner Bézier points of the patch on U are equal to 1.

e Map the rational bilinear patch y(u,v) with the Bézier points cy,...,c4 onto U by the
generalized stereographic projection J to obtain the biquadratic patch with specified

boundaries.

The expressions (12) can be computed using equation (4) or by ?
\A’1 = <Cl,§2)§é' — <01,§é>§2, Co = <\A11, I‘Q)I‘é' — <\71,I‘§')I‘2, and so on. (13)

The latter formulae (13) cause the line segment ¢1B((u) + coBi(u) (u € [0,1]) not to pass
through §~!(q,), so that we do not need to care about the signs of the control points.
When the bilinear Bézier patch y(u,v) is mapped onto U, the control points of the resulting
patch are obtained. In these computations products of Bernstein polynomials occur, which
can be computed with help of the product formula
(D) pmsn

B*(t) Bj (t) =

(14)

Figure 4 shows a biquadratic spherical patch together with the circle on which the points
P1, P3, 92 and qq lie. This patch is neither a rotational patch (i. e. generated by rotating a
circle) nor do the four boundaries intersect in one point of U — as they would do, if it was
constructed by mapping a bilinear surface onto U with help of the “ordinary” stereographic
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projection. The biquadratic patch can be decomposed into two triangular patches of degree
two 2. But it is impossible to describe it by one quadratic parameterization, because otherwise

its boundaries would intersect in a point of the sphere.

The patch of degree (2,4). We saw, that for a biquadratic Bézier patch on the unit sphere
the four boundary circles cannot lie in arbitrarily given planes. Nevertheless, we can prescribe
the fourth boundary too by using a rational patch of degree (2,4). Hence, we have to construct
a patch
12
y(u,0) =" Bj(u) Bj(v) cij,
i=0 =0

of degree (1,2) which is mapped by the generalized stereographic projection ¢ to the desired
surface patch. For simplicity we choose three of the boundaries in exactly the same way as
in the case of the biquadratic patch:

1
Coo =Ci, Cig=C2, C11 = 5(01 +c2), ci2=c3 and cp2=cq4

The fourth boundary is a rational quadratic Bézier curve, thus a conic section, defined by the
control points cgg, cp1 and ¢pz2. The unknown point cg; has to be chosen so that the mapped
curve is the circle through p;, py and q,.

The preimage under § of this circle is a doubly ruled quadric surface (U3) on which the points
coo and cg2 are situated. In general, they do not lie on the same conjugated generating line of
this quadric. But if an arbitrary plane containing ¢gg and cg2 is intersected with the quadric
surface, a conic section is obtained which is mapped by § to the desired fourth boundary circle
on U. Of course, the segment of this conic section between cgg and cy2 can be described as a
quadratic Bézier curve. This yields the middle control point cy;.

First, we represent the above quadric as a bilinear rational Bézier surface. The point d;
(resp. d4) may stand for the intersection of the projecting line through cgy (resp. cgp2) and
the conjugated generator through cgo (resp. cgp). The conjugated lines connecting ¢gy and
d, resp. d; and cpy pass through §=1(q,). With appropriate weights it holds that

Bj(ug) coo + Bi(ug)ds € 4 '(qq) and
Bj(ug)di + Bi(ug)coz € & '(ay) up & [0,1]. (15)

The whole doubly ruled quadric can be now represented by the Bézier surface
r(u,v) = By (u) By (v) coo + Bg(u) By (v) di + By (u) By (v) ds + Bi (u) Bi (v) coz
(u,v € RU{o0}). Hence, the quadratic curve
r(t,1) = BY(t)eoo + 3 BY(1) (dy +d) + By (H)ew, 1€ [0,1],

runs from ¢y to cp2 and lies completely on the preimage of the fourth given circle on U, see
Figure 5. The missing Bézier control point is therefore cg; = %(dl +dy).

10
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Figure 5: The construction of the fourth boundary

Thus the Bézier patch y(u,v) of degree (1,2) which is mapped to the given spherical patch
with arbitrary plane boundaries has been determined. Figure 6 illustrates the situation for
a surface patch whose boundary curves ought to lie in planes parallel to a coordinate axis.
The biquadratic patch obtained by prescribing three boundary circles is a patch of revolution
(Fig.6a). The corresponding patch of degree (2,4) (Fig.6b) realizes the fourth boundary too.
Either pair of opposite boundaries can be chosen to have degree four, the remaining two are

quadratic.

2.3 Interpolation on the sphere

Now, we consider the problem of finding a rational spherical Bézier curve interpolating a set
of given points on the unit sphere U. Suppose, 2n+1 points py, . .., Py, on U with parameters

to <ty < ...<ty, are given. We are searching for a Bézier curve

2n
x(t) =Y B"(t)b; (16)
i=0
satisfying x(¢;) ~ p; for i =0,...,2n. (~ stands for linear dependence of the homogeneous

coordinate vectors.) It has been shown that this problem leads to a system of linear equations
and that the interpolating curve is uniquely determined 9.
Because the generalized stereographic projection ¢ yields every curve of degree 2n on U as

image of a degree n curve, we have to find a rational curve

n

y(t) =) Br(t)ci (17)

=0

11
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(a) (b)

Figure 6: Patches of degree (2,2) (a) resp. (2,4) (b) with prescribed boundaries

of degree n passing through the preimages 6! (p;) of the given points. Every projecting line
6~1(p;) of & is the intersection of two planes #; and ;- where r; € §~!(p;) can be chosen
arbitrarily (cf. (2) and (10)). Thus, the curve y(¢) must lie in both planes for the parameter
value %;:

(£i,y(t:)) =0 (#,yt)=0 , i=0,...,2n. (18)

These are 4n+2 linear homogeneous equations with 4n+44 unknowns, namely four components
of each Bézier point cg,...,c,. There are two linearly independent solutions satisfying the
system of equations, but they both are mapped to the same spherical curve x(¢) when applying
the generalized stereographic projection 4.

In certain cases, y(t;) = 0 may occur, which means the curve y(¢) has a base point at parameter
value #;. (The homogeneous curve y(t) passes for ¢ = ¢; through the origin 0 € IR*.) Then
the curve x(t) = d(y(t)) generally does not interpolate p;, because this point is inaccessible
in the context of the interpolation problem.

When the control points of y(t) have been computed, the control points of x(t) follow directly
out of (8) and the multiplication formulas (14) for Bernstein polynomials. A Bézier curve of

degree 6 interpolating 7 given points is depicted in Figure 7.

3 Rational patches on the hyperbolic paraboloid

This section discusses rational patches on the hyperbolic paraboloid x" Hx = 0. The letter H

means the set of all points of this quadric surface. The set of all points of the plane rg = r3

12
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Figure 7: Interpolating Bézier curve with control polygon

(i.e. z=1) is denoted by R.

3.1 The generalized stereographic projection

Analogously to the discussion of the unit sphere, this section starts with a generalization of
the stereographic projection.
Let ¢ denote the point (0001) T, i.e. the infinite point of the z-axis. The line connecting an
arbitrary point r € R with ¢ intersects the hyperbolic paraboloid H in exactly two points: in
c and a second one 7(r) where
2
o
ror
rmy=| """ |. (19)
ToT2

rr2

The map 7 : r € R — 7(r) € H is called the stereographic projection with centre ¢ on the
hyperbolic paraboloid (see fig. 8). Its inverse map 7' : h € H — 7 (h) € R is given by

i) =( ho h1 hy ho )'. (20)

The intersection of an arbitrary plane with the hyperbolic paraboloid H is a hyperbola (or
a parabola or a pair of lines). The two asymptotes of this hyperbola are parallel to the zz-
resp. yz-plane of the coordinate system. The stereographic projection 7 and its inverse map
preserve this parallelism: If the two asymptotes of a hyperbola on R are parallel to the z-
resp. y-axis, then the image of the hyperbola under 7 is a hyperbola on H.

13
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Again, the image of a bilinear rational Bézier patch on the plane R under 7 is a biquadratic
Bézier patch on the hyperbolic paraboloid H in general. But stereographic projection does
not yield all biquadratic patches on H as images of bilinear Bézier patches. The generalized

stereographic projection v : e € E® + 1p(e) € H where

€oe3

€1€3

Ple) = (21)

€p€2

€162

avoids this disadvantage 9: Any irreducible rational Bézier patch of degree (2m,2n) on the
hyperbolic paraboloid can be obtained as image of a rational Bézier patch in E3 under 1. The
coordinates ey and e resp. ex and es of this patch have the degrees (mqy,m1) resp. (me,n2)
satisfying m1 + mo = 2m and ny + no = 2n.

Analogous to the previous section, the azial projection o : e € E3 +— a(e) € R where

€0€3
ale)= | (22)
€pea

€oe3

is introduced in order to discuss the properties of the generalized stereographic projection.

Some of these properties are:

(H1) The generalized stereographic projection % is the composition of the axial projection «

with the stereographic projection 7: 9% = 7 o «a (see fig. 8).

(H2) The set of all inverse images of a point r € R under « (and so of a point h € H with
r = 771 (h) under v) forms the line

Aq+pqt (A p€eR) (23)

where q is an arbitrary preimage of r under «, for example q = r.
The lines Aq+puq* (A, p € IR) are called the projecting lines of the axial projection. Each
one of them passes through its image under a and through the z-axis. Additionally, it

is parallel to the yz-plane. Figure 9 shows the projecting lines of the axial projection.

(H3) Consider the hyperbolas on R whose asymptotes are parallel to the z- resp. y-axis. (Its
images under 7 are the hyperbolas on H.) The inverse images of these hyperbolas under
a are one-sheet-hyperboloids. Additionally, the inverse images of the lines on R under
a (and so of the parabolas or lines on H under 1)) are hyperbolic paraboloids or planes.

These one-sheet-hyperboloids and hyperbolic paraboloids carry two systems of lines

14
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Figure 8: The generalized stereographic projection 1 on the hyperbolic paraboloid

Figure 9: The projecting lines of the axial projection

15
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(generators). The first system consists of projecting lines (23) of a. The lines of the
second system will be called the conjugated lines with respect to the first system. The

image of a conjugated line under « is a hyperbola or a line on R.

(H4) The image of a given non-projecting line under « is a hyperbola, whose asymptotes are
parallel to the z- resp. y-axis of the coordinate system, or a line on R. Thus the image

of a given non-projecting line under v is a hyperbola, a parabola or a line on H.

(H5) Any plane E in E? contains at least one projecting line Lg. If the plane E does not
contain the z-axis and if it is not parallel to the yz-plane, then the line Lg is unique.
The second part of (U5) holds similarly.

Analogous to section 2.1, the axial projection is a special net projection. Its projecting lines
(see fig. 9) form a hyperbolic linear congruence of lines 13 14

The next section applies the discussed projections:

3.2 The construction of Bézier patches from given boundaries

Rational and integral tensor product surface patches on H with plane boundary curves shall
be constructed now. Unlike the spherical case, there are also patches of degree (1,1) and
degree (1,2) — either rational or integral — lying completely on H.

The hyperbolic paraboloid is a doubly ruled quadric and carries two systems of generators.
Such a straight line on H is obtained by the generalized stereographic projection 9 (see (21))
as image of a line (curve) which is parallel to the yz-plane or which lies in a plane containing
the z-axis. We get integral representations when the curve or surface to be mapped onto H

is parallel to the xy-plane.

The bilinear patch arises as image of another bilinear patch

ag bo ap bo
a1 b1 ay bl
y(u,v) = Bg(u) By (v) + B (u) By (v) + B (u) B (v) + B{(u) Bi (v)
a9 an b2 b2
as as b3 b3
(24)

whose boundaries lie in planes parallel to the yz-plane resp. in planes containing the z-axis.
When 1 is applied, we get a Bézier patch with formal degree (2,2), but it is a degree-elevated
representation of a bilinear patch. The patch is integral iff ag = by and a3 = b3 holds. The
points a = (ag,a1,as,a3)’ and b = (bg,b1,bo,b3)" can be chosen as arbitrary preimages
under % of given opposite corner points on H (see (H2)).

We can derive from representation (24) how (in case of existence) a linear curve on H con-

necting two points p;, p, can be constructed: Choose two arbitrary preimage points ry, ro on

16



R. Dietz et al. / Rational Patches on Quadrics

Figure 10: Tensor product patch of degree (1,2) on the hyperbolic paraboloid

the projecting lines 1~ !(p,) and 9 !(p,), adjust the weight of ry so that the first resp. last
two components are equal to those of ry, then Bf(t)r1 + B} (t) ro yields the desired linearly
parameterized line on H.

Patches of degree (1,2). Suppose, four boundary curves on H are given. Two opposite
curves are straight lines, the other two being parabolas or hyperbolas connecting the straight
lines. Then we can always find a rational Bézier patch of degree (1,2) whose boundaries are
segments of the above curves.

A quadratic boundary curve (e.g. between the corner points p; and ps) can be constructed
analogously to the spherical case as image under 9 of a linear curve: the preimage of the
specified boundary is generally a doubly ruled surface whose conjugated generating lines are
mapped by % to the given boundary curve (H3). Hence, two points on the projecting lines
1~ (p;) and 1 ~!(py) can be chosen, so that their connecting line is a conjugated generator
of the preimage surface. The weights of the points are arbitrary.

Due to the fact that for a linear curve the weight of the endpoint is uniquely determined
but the endpoint itself can be chosen (on the corresponding projecting line), this allows a
construction of a bilinear patch which is mapped to a patch of degree (1,2) enclosed by four
specified boundary curves. A patch that has been constructed this way is shown in Figure
10.

Biquadratic patches. The construction of biquadratic Bézier patches on H is analogously
to that of patches on U. Generally, a patch with four given plane boundary curves does exist
only, if the patch corners p;, p3 and the second intersection points q, and q4 are coplanar,

i.e. they lie on a conic section or on two intersecting straight lines on H. An exception is
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Figure 11: The general biquadratic patch on the hyperbolic paraboloid

made by those patches one of whose boundary curves is a line segment. The constructions
of linear and quadratic boundary curves on H directly show, that in this case the location of
the boundaries is arbitrary.

Figure 11 illustrates the biquadratic patch on H with the points p;, p3, 4, and q, lying in a
plane, in this case on a hyperbola.

If the bilinear patch which is mapped on H by v is parallel to the zy-plane, an integral Bézier

patch is obtained having four boundary parabolas resp. line segments.

Patches of degree (2,4). If four arbitrary boundary hyperbolas or parabolas are prescribed,
a patch of degree (2,4) has to be used. The preimage patch of degree (1, 2) yielding the desired
surface patch is constructed analogously to the spherical case.

3.3 Interpolation on the hyperbolic paraboloid

Now, we construct a rational curve on H interpolating given points. The curve of degree 2n
can be set up as image under 9 of a degree n curve y(¢) which passes through the 2n + 1
preimage lines 9~ (p;) (i = 0,...,2n) of the given points py, ..., Py, at the given parameter
values tg < t; < ... < tg,. The line 9~!(p,) is the intersection of the planes #; and #;* (see
(2) and (23)), where r; € 9~1(p,). Thus, the interpolation problem for the curve y(t) is a

linear problem and is given by

(r7,y(ti)) =0 " yt)=0 , i=0,...,2n. (25)
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Figure 12: Interpolating curve on the hyperbolic paraboloid

These 4n + 2 equations can be decomposed into two systems of linear equations, namely

consisting of 2n + 1 equations with 2n + 2 unknowns (the components of the control points of
y(t)) each. The first equation system yields the Oth- and 1st-components of the curve y(t),
the second system yields the 2nd- and 3rd-components. If y*(¢;) = 0 or y**(¢;) = 0 holds,
the curve x(¢t) = ¥ (y(t)) has a base point for t = t;, i.e. x(t;) = 0. Then the point p; is
inaccessible in this interpolation problem and is not interpolated by x(t).

Applying the generalized stereographic projection % to the curve y(t¢) yields the interpolating
curve x(t). Its Bézier points can be easily computed. The constructed curve can have points
at infinity and — moreover — points at infinity can be interpolated too.

Contrarily to the spherical case not every curve x(t) of degree 2n is obtained as image under
9 of a degree n curve y(¢). The components y*(¢) and y**(¢) can be given different degrees
which have to sum up to 2n. But we see from (26), that this would cause one of the equation
systems to gain additional degrees of freedom, the other in return could be unsolvable.

If we set up y(t) as curve of degree n we can show that every solution leads to the same
interpolating curve x(¢). Figure 12 shows a curve of degree four interpolating five given

points.
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4 B-spline curves and surfaces

We will now extend our constructions to B-spline curves and tensor-product B-spline surface
patches on quadrics. We get the corresponding curve or surface representation if we replace
for instance in (17) or (5) the Bernstein polynomials by B-spline basis functions N; x(7) with
k as order (degree k — 1). The parameter 7 may be defined over a knot sequence T'. In the
interior of 7" all knots may have multiplicity 1. Analogously to (14) we need product formulae

for the B-spline functions N; (7). For such products we can set

M
Nik(T) - Njw(r) = D o) Ny, tomy on—y (1) (i <) (27)
m=1

while multiplication of two functions of degree k — 1 leads to a function of order 2k — 1. The
coefficients a%‘j ) and the index shift s; ; have to be determined.

Because the B-spline functions NV; ; have continuity of order £ —2 with our assumption for the
knot vector, the product of two basis functions must have the same continuity class. Therefore
each knot in the knot sequence of N, 9,_1 must have multiplicity k. The coefficients ag{j )
can be determined recursively with help of wellknown recursiv definition of B-spline functions

15 16 The factors o's?) vanish ifj & {i,..,i+k— 1} otherwise M is determined by

for j=1 : M=k(k—3)+3

. (28)
for j=i+8 : M=k(k—(8+1))+1 Be{l,.,k—1}.

This formula has an asymmetry: for the product with ¢+ = j two additional coefficients appear
at the beginning and at the end of the sequence {i,..,% + k — 1}.

Consider a closed B-spline curve of order k¥ = 3 with a uniform knot sequence (0,1,2,3,...) in
the parameter space E2. Applying the generalized stereographic projection (8) to this curve
yields a closed B-spline curve of order 5 with the knot sequence (0,0,0,1,1,1, 2,2,2,3,3,3,...)
on the sphere. Its homogeneous control points can be computed with help of the following

product table for the basis functions:

2 _ 1 3 1
(Ni.3) = 5N3i125 + $N3zit3s5 + 5N3i445,
1 1 1 1
Ni3-Nit13 = 57N3i435 + 7N3iva5 + 1N3i455 +  37N3i46.5,
1
Ni3+Nit23 = 57Nsi165-

The number M in (27) is reduced for open spline curves: then we have multiplicity k at the
boundaries of the knot sequence and therefore M must be lower. For example, applying the
generalized sterographic projection (8) to an open B-spline curve of order ¥ = 3 with the
knot sequence (0,0,0,1,2,3,4,5,5,5) in E3 yields an open B-spline curve of order 5 with
the knot sequence (0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,5,5) on the sphere. For the
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B-spline basis functions we get the following products 1° 16

(No3)® = Nos
(Ni3)? = 2Nos + LiNg;
(Nos)® = iNus + 2Ns5 + 1Ngs
(N33)® = iN75 + 3Ngs + LiNgs
(Nu3)? = iNis + 2Nus
(Ns3)® = Nizs
Nos-Nig = N5 + 15Nas
Nig-Noz = 3iNs5 + INus + HNss
Nos N3z = £Nss + iNgs + iNzs + LHNgs
N33-Nys = 5;Ngs + 3Nos + 1Nwos
Ni3-Ns3 = 15Nus + 3Nias
Nos-Nosz = EHNos
Nis-Nss = 5 Nss
Nos-Nyz = 5 Ngs and
N33-Ns3 = 5Nis

For modelling with B-splines on the sphere we consider the interpolation problem: Let 2n+1
points p; on the sphere with parameter values t; (i = 0, ...,2n) be given. The lines § !(p,) in
the parameter space E° have the equations (10), thus we get the same interpolation conditions
(18) as in the Bernstein case: Let

() =3 Ny,
=0

be the B-spline curve which interpolates the lines 6~1(p;) in E® with the unknown homo-
geneous control points c¢; and the B-spline basis functions Nj(t) of order k (degree k — 1).
The knot sequence may have only values with multiplicity 1 in the interior of the parameter
domain. With help of the pair of equations (18) we receive a (4n+4) x (4n+2) homogeneous
linear system for the (4n +4) unknown components of the control points ¢;. Thus two values

(components) of the control points can be chosen completly free — nevertheless the image of

y on the sphere is unique 9.

After determining the control points ¢; with (18) we have to map the curve y(t) € E® back

to the sphere with help of the generalized stereographic projection (8). Now we have to
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Figure 13: A closed spherical B-spline curve of order 5 with 3 segments interpolating
9 spherical points and the control polygon.

contemplate that there are different product formulae for the B-spline functions for open and

for closed curves. Thus we get the following

Result 1. If2n+1 points py, . .. Py, on the sphere U with parameters to, ..., ton, € IR (t; # t;
for i # j) are given, then there exists exactly one closed spherical rational B-spline curve of
order 2k — 1

M
x(t) =Y Nigg-1(t)d;
i=0

with M = k(n + 1) — 1 and the homogeneous control points d; satisfying the homogeneous
interpolation conditions (18) (*). (Note that again base points (cf. section 2.3) may occur !)
Each knot of its knot vector has the multiplicity k. The knot vector of the preimage y(t) of

x(t) under 6 contains only parameter values of multiplicity 1.

For the proof we consider the knot sequence: For the closed curve y(t) we have the sequence
(10, - - -, Tn) with the multiplicity 1 for each value. The knots of the knot sequence of the image
x(t) have the multiplicity k, that means we need for the same parametric interval k(n + 1)

B-spline basis functions. Because we begin to summarize with 0 we have M = k(n + 1) — 1.

Figure 13 contains an example for £k = 3,n = 4 and M = 14 interpolating 9 given points on
the sphere.

For open curves we have the following

*The parameter values ¢; of the given points are assumed to be distributed as uniform as possible over the
knot sequence. (Each interval of the knot sequence should contain “nearly the same number” of parameters ¢;
of given points.) Then the system of equations (18) has maximal rank.
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Figure 14: An open spherical B-spline curve of order 5 with 4 segments interpolating

11 points and the control polygon.

Result 2. If 2n + 1 points py,..., Py, on the sphere U with parameters ty,...,ton, € IR
(ti #t;) fori # j are given, then there exists ezactly one open spherical rational B-spline

curve of order 2k — 1
M
x(t) = Niagk—1(t)d;
i=0

with M = k(n — k+ 3) — 2 and the homogeneous control points d; satisfying the homogeneous
interpolation conditions (18) (*). Each interior knot of the knot sequence has the multiplicity
k. The knot vector of the preimage y(t) of x(t) under § consists of two boundary values with
the multiplicity k and of interior values with the multiplicity 1.

For the proof we have to remark, that an open curve y(t) has a knot sequence withs =n — k + 2
segments, i.e. s = n —k+ 1 interior knot values. These values have the multiplicity k&, thus we
have k(n — k + 1) different B-spline basis functions in the interior. The two boundary values
have the multiplicity 2k — 1, therefore we have totally k(n — k + 1) + 2k — 1 different basis

functions on the given parametric interval. Because we summarize from 0 we get
M=kin—k+1)+2k—2=k(n—k+3)—2.

Figure 14 contains an example with K = 3,7 = 5 and M = 13 interpolating 11 given points

on the sphere.

23



R. Dietz et al. / Rational Patches on Quadrics

Figure 15: A tensor-product B-spline surface of order 5 consisting of 2 x 2-segments.

The boundary curves are given by points on the sphere.

If we extend these results to tensor-product surface patches we get for open patches the

following

Result 3. If (2n, + 1) - (2n, + 1) points p, on the sphere U with parameters (u;,v;) € IR?
are given, then there exists exactly one quadrilateral spherical rational tensor-product B-spline
patch of order (2k — 1,2k — 1)

My, My
x(u,v) =Y > Niog—1(u) Njog—1(v)di;
i=0 j=0
with My, = k(ny — k+3) —2, M, = k(ny — k + 3) — 2 and the homogeneous control points
d; ; satisfying the homogeneous interpolation conditions (**). The interior knots of the knot
sequences of x(u,v) have the multiplicity k, the interior knots of the knot sequences of the

preimage y(u,v) under § have the multiplicity 1.

Another way to get a spherical tensor-product surface patch is to determine the boundary
curves of the desired patch with help of interpolation of given points on the boundary curves
with respect to result 1 or 2. Thus we have after solving the corresponding homogenous
system the control points of the preimages y(¢) of the required spherical curves. Now we can
choose suitably the interior control points of the preimage under § of the required spherical
patch (figure 15). Note that the surface patch in figure 15 is only continuous of order 1 (C),

but geometric continuous of order oo (G*°) !

**The assumption (*) should hold similarly.
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Figure 16: An open B-spline curve of order 5 with 2 segments interpolating 7 points
on a hyperbolic paraboloid with control polygon.

We can extend the method of interpolation by Bezier curves to B-spline curves and surfaces
on the hyperbolic paraboloid (or on the hyperboloid of revolution, see chapter 5). Figure
16 contains an open B-spline curve of order 5 with 2 segments interpolating 7 points on a

hyperbolic paraboloid.

5 Extension to other quadrics

Consider an arbitrary nondegenerated quadric surface x' Bx = 0 (where B is a symmetric
nonsingular (4,4)-matrix) in E3. In this section, a projective map 7 : x — m(x) = Px (where
P is a nonsingular (4,4)-matrix) mapping the given quadric surface to the unit sphere or to the
hyperbolic paraboloid is constructed in order to extend the results of the preceding sections.
The image of the given quadric under 7 is the unit sphere U or the hyperbolic paraboloid H
iff B= PTUP or B = P"HP hold, respectively.

Applying principal axes transformation to matrix B yields an orthonormal matrix @) satisfying
B = Q" DQ where the diagonal matrix

o 0O 0 0
A
p=| o M 00 (29)
0 0 X O
0 0 0 XN

contains the eigenvalues \; € IR (i = 0,1,2,3) of B. The given quadric surface x' Bx = 0

was assumed to be nondegenerated. Thus all eigenvalues are not equal to zero.
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First case. All eigenvalues have the same sign. In this case, the given quadric surface does
not contain any real points.

Second case. Exactly one eigenvalue is positive. Let without loss of generality A\g = (&;)?,
A= —(£1)% da = —(&)% and A3 = —(£3)? (& € R) be assumed. The required projective
map 7y is given by Py = DyQ where

& 0 0 0

py=| % & 00 (30)
0 0 & 0
0 0 0 &

It satisfies B = PJ UPy, i.e. it maps the given quadric to the unit sphere U. The given
quadric is an oval one.

Third case. Exactly two eigenvalues are positive. Let without loss of generality A\g = ({o)?,
A= —(61)% A2 = —(¢2)? and A3 = ((3)? (¢; € IR) be assumed. The required projective map
7wy is given by Py = %DHQ where

G ¢ 0 0
0 0 ¢ G
Dy = . 31
1o 0 e -6 (31)
G —¢t 0 0

It satisfies B = PI}— H Py, i.e. it maps the given quadric to the hyperbolic paraboloid H. The
given quadric is a doubly-ruled one.

Fourth case. Exactly three eigenvalues are positive. This case can be reduced to the second
one by discussing the equation x ' (—B)x = 0 instead of x' Bx = 0. (Both equations describe
the same quadric.)

With help of the constructed projective maps 7y resp. 7y, the given quadric surface x ' Bx = 0
(and the given boundaries of the required patches) can be mapped to the unit sphere U resp.
to the hyperbolic paraboloid H. Now the methods derived in the previous sections can be
applied in order to construct rational patches on U resp. H from given boundaries. Applying
71 :x— 7 (x) = P !x to these patches yields the required surface representations on the
given quadric surface.

As example, figure 17 shows an interpolating rational B-spline curve of order 5 with 2 segments
interpolating 7 points on the hyperboloid of revolution. First the given points have been
mapped to the hyperbolic paraboloid with help of the projective map 7p (see (31)). Then
the systems of equations (26) have been solved and an interpolating B-spline curve on H
has been found. Applying the projective map W;Il has yielded the required curve on the

hyperboloid of revolution.
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Figure 17: B-spline curve of order 5 with 2 segments interpolating 7 points on the

hyperboloid of revolution

Conclusion

Detailed constructions of rational patches on the unit sphere and on the hyperbolic paraboloid
have been presented in this paper. These constructions are based on the use of generalized
stereographic projections. The method has been applied to rational B-spline surface patches.
The results have been extended to arbitrary nondegenerated quadric surfaces by constructing
an appropriate projective transformation mapping a given oval or doubly ruled quadric surface
to the unit sphere or to the hyperbolic paraboloid, respectively.

The method can be applied to arbitrary rational parametric representations of curves and
surfaces. Figure 18 shows a five-sided patch on the sphere. First in the parameter space E? a
five-sided patch was constructed with a method introduced by Sabin 17 and then this patch
was mapped with § (see (8)) to the sphere.

Further research will complete the results by discussing degenerated quadrics like cones and
cylinders. The generalized stereographic projection will be applied to the approximation of

given point sets by rational curves on quadrics.
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Figure 18: Five-sided patch on the sphere
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