Spline Implicitization of Planar Curves
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Abstract. We present a new method for constructing a low degree
implicit spline representation of a given parametric planar curve. To
ensure the low degree condition, quadratic B-splines are used to ap-
proximate the given curve via orthogonal projection in Sobolev spaces.
Adaptive knot removal, which is based on spline wavelets, is used to
reduce the number of segments. The B-spline segments are implici-
tized, and the resulting bivariate functions are joined along suitable
transversal lines, yielding a globally continuous bivariate function. As
shown by analyzing the asymptotic behavior of these transversal lines
for step size h — 0, the given curve can be implicitized with any
desired accuracy.

§1. Introduction

Planar curves in Computer Aided Geometric Design can be defined in two
different ways. In most applications, they are described by a parametric
representation, r = x(t)/w(t) and y = y(t) /w(t), where x(t), y(t) and w(t)
are often polynomials or piecewise polynomials. Alternatively, the implicit
form f(x,y) = 0 can be used. Both the parametric and implicit repre-
sentation have their advantages. The availability of both often results in
simpler and more efficient computations. For example, if both representa-
tions are available, the intersection of two curves can be found by solving
a one—-dimensional root finding problem.

Any rational parametric curve has an implicit representation, while
the converse is not true. The process of converting the parametric equa-
tion into implicit form is called implicitization. A number of established
methods for ezact implicitization exists: resultants, Grobner bases, and
moving curve and surface, see e.g. [3] for further information. However,
eract implicitization has not found widespread use in CAGD. This is —
among other reasons — due to the following facts:
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e Exact implicitization often produces large data volumes, as the re-
sulting implicit polynomials may have a huge number of coefficients.

e The exact implicitization process is relatively complicated, especially
in the case of high polynomial degree. For instance, most resultant—
based methods need the symbolic evaluation of large determinants.

e Even for regular parametric curves, the exact implicitization may have
unwanted branches or self-intersections in the region of interest.

For these reasons, approximate implicitization has been proposed. Several
methods are available: Montaudouin and Tiller [10] use power series to
obtain local explicit approximation (about a regular point) to polynomial
parametric curves and surfaces. Chuang and Hoffmann [2] extend this
method using what they called “implicit approximation”. Dokken [4] pro-
poses a new way to approximate the parametric curve or surface globally;
the approximation is valid within the whole domain of the curve segment
or surface patch. Sederberg et al. [12] use monoid curves and surfaces to
find an approximate implicit equation and approximate inversion map of
a planar rational parametric curve or a rational parametric surface .
This paper presents a method for constructing what we call a spline
implicitization for planar curves: a partition of the plane into polygonal
segments, and a bivariate polynomial for each segment, such that the col-
lection of the zero contours approximately describes the given curve. The
polynomial pieces form a globally C'™ spline function for a certain choice
of m. In this paper we restrict ourselves to continuous functions (m = 0).
A method for C?! spline implicitization is currently under investigation [7].

§2. B-spline Approximation of Planar Curves

Following the technique proposed in [11], we generate a quadratic B-spline
approximation via orthogonal projection in Sobolev spaces. The quadratic
B-splines B; on [0,1] with uniform knots (step size h = 27%) and 3-
fold boundary knots form an orthonormal sequence in a suitably weighted
Sobolev space. In the interior of the segment, the inner product is defined
as

(f.9) =3 (F.9)+ 3 (7 9) + 5° (79", 1)

where (.,.) is the usual L? inner product. In order to achieve orthogonal-
ity at the boundary segments, additional terms have to be used. These
weights and weight matrices (which are used near the boundary), have
been specified in [11].

The B-spline approximation g* of a given curve g(t) = (g1(¢), g2(t))
with respect to the norm which is induced by the inner product (1), can



Spline Implicitization 3

6

5

2 4 6 8 10 12

Fig. 1. The original curve (black) and the error introduced by approximating it
with a quadratic B—spline curve (gray, exaggerated by a factor of 25,000).

then be written as

g'()) =Y d; B;(t) with dj:(<gl,g;§), @)

<g2a

The control points d; of the approximating B—spline curve can be gen-
erated by simple and efficient computations, as only (possibly numerical)
integrations are needed. Also, no assumption about the given parametric
representation have to be made, except that it should be at least in the
underlying Sobolev space H?2. By using sufficiently many segments, an
arbitrarily accurate approximation can be generated; the approximation
order is 3.

Example. Consider the polynomial parametric curve g of degree 20 which
is shown in Fig. 1 (black curve). First, we approximate g using quadratic
B-splines. Fig. 1 shows the error between g (black) and the quadratic
B-spline approximation g* (gray) for step size h = 1/128. Note that the
error had to be exaggerated by a factor § = 25,000 to make it visible.

§3. Data Reduction via Spline Wavelets

After computing the initial B—spline approximation, we apply a knot re-
moval procedure in order to reduce the number of segments. Knot removal
has been discussed in a number of publications, see e.g. [5,9] and the ref-
erences cited therein. In the present work, we use a simple and efficient
method which is adapted to our special situation. It is based on spline
wavelets [1]. The method is not optimal, but it is cheaper than all other
methods, since no sorting or ranking lists (as used in [5]) are required.

First we compute the wavelet transform of the initial B-spline ap-
proximation. Then, by setting all wavelets coefficients vectors with norm
less than a certain threshold to zero, we remove blocks of wavelets. For
each block, one of the two common knots can be removed from the knot
sequence. The length of these blocks varies between 2 (for knots close
to the boundary) and 5 (for inner knots) wavelet coefficents. Finally, we
generate the optimized approximative B-spline representation g** of the
given curve over the reduced knot sequence.
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Fig. 2. The original curve (black) and error introduced by the B—spline approx-
imation after the data reduction (gray, exaggerated by a factor of 10).

Error bounds can be generated by applying the wavelet synthesis
to the set of removed wavelets. Due to the convex hull property of the
B-splines, the error is bounded by the maximum absolute value of the
resulting Bézier control points.

Example (continued). We apply this procedure to the quadratic B—
spline curve g*. The number of knots is reduced from 133 to 17, where
the threshold is equal to 10~%. Fig. 2 shows the error between the original
curve g (black) and the final B—spline representation curve g** (gray) over
Kgna- The knots are shown as circles. The error is exaggerated by a factor
0 = 10 to make it visible.

§4. Segmentwise Implicitization

After the data reduction process, we obtain a quadratic B—spline approxi-
mation g** defined over a nonuniform knot sequence. In order to implicit-
ize this curve, we split the B—spline representation of this curve into Bézier
segments, using knot insertion. Then, each quadratic Bézier segment is
implicitized.

Each quadratic parametric Bézier segment has three control points.
Let (po,qo0), (p1,q1) and (p2,g2) be the control points of one of these
segments. The implicit form of this segment can be shown to be

Clo.y) = det (Qo(’!/)Pz(w) — Py(#)Q2(y) Qo(y)Pi(z) — Po(x)Ql(y))
: Q1(y)Pa(z) — Pi(2)Q2(y) Qo(y)Pa(x) — Po(z)Q2(y)

where P;(z) = (3)(p; — z) and Qi(y) = (3)(¢; — y), for i = 0,...,2.
This results in a sequence of quadratic bivariate polynomials, one for each
Bézier segment of the spline curve g**.

§5. Joining the Segments

In order to generate a continuous function, we join the bivariate polynomi-
als which have been produced by the implicitization process along suitable
transversal lines.
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Fig. 3. Choosing the transversal line. Fig. 4. Modification of the control
points at an inflection, see
Section 5.3.

5.1 Defining a continuous function

Consider two neighboring Bézier segments of g** with implicit represen-

tations G;(x,y), i = 1,2. These segments are parabolas which meet with
tangent continuity at their junction point pg. Moreover, they intersect
in two additional points p1, p}, see Fig. 3. These two points can be real,
conjugate complex, or even at infinity. Obviously, the transversal line has
to be chosen as the line passing through the junction point py and one of
these other two intersection points p1, p}j. If these points are real, then
there are two possibilities to choose this line. We pick the line L(pg, p1)
which is closer to the normal vector of the curve. According to the follow-
ing lemma, we can then always achieve a C° joint along the transversal

line L(po, P1)-

Lemma 1. Suppose we are given two quadratic functions G1(x,y) and
Ga(z,y) such that they have a common root and a parallel gradient at
Po, and intersect at p1. Let L(po,p1) be the line joining py and ps.
Then after multiplying G2 by a suitable constant, G1(z,y) and Ga(z,y)
are identical along the line L(pg, p1).

Proof: The restrictions of G1(z,y) and Ga(z,y) to the line L(pg, p1) are
two quadratic functions with common roots at pg and p;. After multiply-
ing G5 by a suitable constant, they are identical along this line. O

After multiplying the implicitized segments with suitable constants,
the collection of these bivariate polynomials — each restricted to a tile
bounded by the transversal lines as described in Lemma 1 — forms a con-
tinuous function. This function is defined within a certain neighborhood
of the curve. (Clearly, it can be extended continuously beyond this neigh-
borhood, using additional polynomial segments.)
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5.2 Asymptotic Behavior of the Transversal Lines

We investigate the behavior of the transversal lines for decreasing step
size (= segment length) h. For the sake of simplicity, we assume that
the original curve is given by an arc length parameterization. It is well
known that no polynomial and rational curves — except straight lines — can
be equipped with a closed—form arc length parameterization [6]. However,
one can always reparameterize a general parametric curve by its arc length
approximately, using numerical methods.

Theorem 2. Consider a C® curve which is parameterized by its arc
length, and which has no inflection point, Kk # 0. We apply the process
of spline implicitization (orthogonal projection in Sobolev space, implic-
itization, and joining of the segments) to the curve, where the knots of
the quadratic B-Spline curve are uniformly spaced with step size h. If the
step size h tends to zero, then the transversal line L(po,p1) gets closer
and closer to the normal vector of the curve at the point pg.

Proof: Our analysis is based on the so—called canonical Taylor expan-
sion [8] of the curve, which is derived from the Frenet-Serret formulas in
elementary differential geometry. This expansion is given by

1,23 1 4 5
( s — gkps® — gkok1s® + O(s®) )
bl

3 k0 S%+ § K183+ o (ke — K3) s+ O(s5°)

p(s) = (3)
with ko = k(0), k1 = (d/ds) k(0), etc. First, we approximate the curve
p(s) with a quadratic B-spline curve defined over a uniform knot sequence
(..., —2h,—h,0, h,2h,...), as described in Section 2. We consider the two
neighboring Bézier segments pieg, and prigng with the parameter domains
[—h, 0] and [0, k] respectively. Using the expansion (3), we generate Taylor
expansions for the B-spline control points d_1, dg, d1, d2 of both segments,

4. (q:%hi 3k3h3 +(9(h4)) _ <:|:%h2|: 3ikoh’ +O(h4)>
T \koh2 T 2mnt 40ty )" +hmh® + O(hY) )

where d; is associated with the knots (¢ — 1)h and éh. In order to find the
intersection points p1, p}, we implicitize piers, and substitute the para-
metric form of prigns into the implicit form of pier;. This gives a quartic
equation in the curve parameter S of the right segment, where s = hS.
The factor S? factors out, as both parabolic arcs are joined with tangent
continuity. Solving the remaining quadratic equation we get two values
S1 and Sy of the parameter S. By substituting these values into prighs,
we obtain two Laurent series for the additional intersections,

k1, 2 (3Kk2 — Koka + Kg)

- h+ O(h?
k3 3 Ka +0O(h)
p1 = 0 9 (4)
8,  1(39k2 + 12k3 — 20K0k2)
—h7% 2 0 + O(h)
Ky 6 Ko



Spline Implicitization 7

Fig. 5. The transversal lines for different step sizes.
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Clearly, if the curve has no inflection at po (i-e., kg # 0), then the first
intersection point p; converges for decreasing step size, h — 0, to the
infinite point of the normal at py. The second intersection tends to a
fixed limit position, which is fully determined by the curvature and its
derivative with respect to arc length at pg. O

We illustrate this result by an example (see Fig. 5), showing the curve
segments (gray) and the possible transversal lines (black lines, solid and
dashed) for three step sizes. The black transversal line converges to the
curve normal.

According to this result, the system of transversal lines behaves nicely,
provided that the curve has no inflections, is parameterized by an arc
length parameter, and is approximated with sufficiently small step size
(without knot removal). Under these assumptions, the two additional
intersections of the parabolas are real, and one of them can be brought
arbitrarily close to the normal of the curve. In the limit, for step size
(segment length) h — 0, these transversal lines envelop the evolute of the
given curve, see [8]. Thus, for sufficiently small step size h, we get a system
of transversal lines through the junction points of neighboring segments,
such that the implicit equations can be joined (at least) continuously along
them.

According to our numerical experiments, the arc length parameteri-
zation is not really needed in practice, and also knot removal can be used,
in order to reduce the number of segments. However, inflections of the
given curve cause a problem which has to be dealt with.

5.3 Singular Case: Inflection Points

The above construction fails at inflections of the quadratic spline curve, as
the additional intersection points p1, p} do not exist in this case. In this
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situation, the two implicitized segments can still be joined continuously,
provided that they can be seen as a graph of a univariate quadratic spline
function with respect to a suitable coordinate system; the parallels of the
y-axis then form a system of suitable transversal lines. That is, the axes
of both parabolas have to be parallel; the two parabolas then share the
infinite point of the y-axis.

Generally, however, the axes of the two parabolic segments are not
parallel. As an example, Fig. 4 (left) shows an inflected curve consisting
of two parabolic segments GG, G2 and the control polygon. The B-spline
control points (d_1,...,ds) are shown as diamonds, and the additional
Bézier control points (b_g,...,by) are shown as circles.

The axes of the parabolas are parallel if and only if there exists an
auxiliary line G, such that the orthogonal projections of dp and d; are the
midpoints of the projected line segments b_sby and bgbs. We choose the
line G as a parallel to b_sbs. In order to obtain parabolas with parallel
axes, we adjust the location of the B-spline control points dy and d; on
the lines d_;dy dids, leading to modified points djj and d}. The new
locations can be found by a short calculation. Clearly, this process will
introduce a minor error.

Example (finished). Using these techniques we derived a piecewise
quadratic function G, whose zero contour G(z,y) = 0 is the quadratic
B-Spline curve (see Fig. 2). In order to visualize the quality of the im-
plicitization, Fig. 6 shows the level curves or algebraic offsets (thin lines),
G(z,y) = c for certain constants (algebraic distances) ¢, and the transver-
sal lines (which define the polynomial pieces of G) through the junction
points of the segments. In order to make the picture clearer, we enlarged
a part of the curve. Generally, the algebraic offsets (which consist of
parabolic arcs) are not tangent continuous.

§6. Conclusion

We have presented a method for generating an approximate implicit spline
representation of a parametric planar curve which is valid within a certain
neighborhood of the given curve. The construction consists of four steps:
B-spline curve approximation, knot removal, segment implicitization, and
segment joining. According to our numerical experience, the numerical
reparameterization to arc length, although essential for theoretical analy-
sis, is not needed in practice.

Compared to the existing methods for implicitization, our method
has the following advantages.

e The method is computationally simple. In particular, no evaluations
(symbolic or numerical) of large determinants are needed.
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Fig. 6. Implicitized curve and algebraic offsets.

e It produces a low degree implicit representation. For instance, the
intersection of a line with the implicitized curve can be found by
computing the roots of a quadratic polynomial.

e Due to the low degree, the methods avoids unwanted branches or
singularities, which otherwise could be present in the neighborhood
of the given curve.

e The implicit function is globally continuous.

e The method can be applied to any parametric curve with coordinate
functions in the Sobolev space H?2, not just to polynomial or piece-
wise polynomial representations.

e As compared to the exact implicitization, the method yields — for high
degree curves — a smaller data volume. In our example (degree 20),
we have only 72 coefficients. Exact implicitization would produce 231
coefficients. Clearly, degrees as high as 20 are not realistic for applica-
tions. This advantage of the approximative implicitization, however,
becomes more important in the surface case, where already bicubic
patches give exact implicit representations involving 1330 coefficients.

As a matter of future research, we plan to generalize this method to the
C? case, and to surfaces.
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