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Abstract. As observed by Farouki et al. [9], any set of C1 space bound-
ary data (two points with associated first derivatives) can be interpolated
by a Pythagorean hodograph (PH) curve of degree 5. In general there
exists a two dimensional family of interpolants.
In this paper we study the properties of this family in more detail. We
introduce a geometrically invariant parameterization of the family of
interpolants. This parameterization is used to identify a particular solu-
tion, which has the following properties. Firstly, it preserves planarity,
i.e., the interpolant to planar data is a planar PH curve. Secondly, it has
the best possible approximation order (4). Thirdly, it is symmetric in the
sense that the interpolant of the “reversed” set of boundary data is sim-
ply the “reversed” original interpolant. These observations lead to a fast
and precise algorithm for converting any (possibly piecewise) analytical
curve into a piecewise PH curve of degree 5 which is globally C1.
Finally we exploit the rational frames associated with any space PH
curve (Euler-Rodrigues frame) in order to obtain a simple rational ap-
proximation of pipe surfaces with a piecewise analytical spine curve and
we analyze its approximation order.

1 Introduction

Pythagorean hodograph (PH) curves (see the survey [11] and the references cited
therein), form a remarkable subclass of polynomial parametric curves. They have
a piecewise polynomial arc length function and, in the planar case, rational offset
curves. These curves provide an elegant solution of various difficult problems oc-
curring in applications, in particular in the context of CNC (computer-numerical-
control) machining.

In the planar case, the properties and various constructions of PH curves have
been thoroughly studied, e.g., [1, 6, 8, 7, 18, 23]. Due to the constrained nature of
PH curves, all constructions – which are linear in the case of polynomial curves
– become nonlinear in the PH case. Consequently, they may have more than one
solution, and the problem of choosing the ‘best’ solution has to be addressed,
e.g. by analyzing the approximation order or using the rotation index [15, 18,
20–22].
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Spatial PH curves were introduced by Farouki and Sakkalis in 1994 [5], and
they have later been characterized using results about Pythagorean quadruples
in the ring of polynomials and quaternion calculus [2, 4, 10]. Spatial PH curves
can be equipped with rational frames, which were studied in [3, 13, 17].

Various constructions were also given, e.g. a global method for C2 inter-
polation of point data by quintic splines has been presented in [12]. Hermite
interpolation of G1 boundary data was addressed in [17], and C1 Hermite in-
terpolation by PH quintics was discussed in [9]. In the latter case, the authors
identify a family of interpolants to any C1 Hermite data which depends on two
free parameters, and a heuristic choice for them is given. Later, this has also
been related to helical interpolants [14].

The present paper is devoted to the problem of C1 Hermite interpolation
by spatial PH quintics, and to the approximation of pipe surfaces and sweeping
surfaces. We study the family of interpolants and identify the solution which has
the best approximation order, preserves planarity, and is symmetric with respect
to the reversion t 7→ (1 − t) of the parameter interval [0, 1].

The remainder of the paper is organized as follows. First we recall some ba-
sic facts about quaternion algebra and PH curves. The first part of Section 3
summarizes the approach taken in [9] to the problem of C1 Hermite interpola-
tion by PH quintics. In the second part we introduce a parameterization of the
family of interpolants with respect to a standard position. We prove that this
parameterization is geometrically invariant and symmetric.

Section 4 provides a qualitative analysis of the solutions. We give an asymp-
totical analysis, including approximation order, and we identify the parameter
values which preserve planarity. Based on these results, we use optimal solution
for converting analytical curves into piecewise PH quintic curves and for the
approximation of pipe surfaces. Finally we conclude the paper.

2 Preliminaries

In order to make this paper self–contained, we recall some basic facts about
quaternions and Pythagorean Hodograph curves.

2.1 Quaternions

Quaternions (see e.g. [19] for an elementary introduction) are elements

A = a + axi + ayj + azk (1)

of 4–dimensional real linear space Q with basis 1, i, j,k. The space Q has the
structure of a non-commutative field, where the multiplication is defined by the
relations

i2 = j2 = k2 = ijk = −1 (2)

of the basis elements, which imply

ij = −ji = k, jk = −kj = i, ki = −ik = j. (3)
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The conjugate of any quaternion (1) is defined as A∗ = a− axi− ayj− azk, and
its absolute value is the non-negative real number

|A|2 =
√
AA∗ =

√
A∗A =

√

a2 + a2
x + a2

y + a2
z. (4)

Unit quaternions, which are characterized by |A| = 1, form a multiplicative
group. Pure quaternions are distinguished by having a vanishing scalar part.

Quaternions are traditionally used in classical mechanics. Any vector c =
[cx, cy, cz]

> ∈ R3 is identified with the pure quaternion cxi+ cyj+ czk. Any unit
quaternion U can be expressed in the form

U = cos
θ

2
+ u sin

θ

2
, θ ∈ [−π, π), (5)

where u is a unit pure quaternion. Then the mapping

U : R3 → R3 : U(c) = U cU∗, (6)

represents a rotation through the angle θ about the axis spanned by the direction
vector u.

In the sequel we will use the the abbreviation

Q(φ) = (cosφ + i sin φ) (7)

for unit quaternions with vanishing j and k components.
For the construction of PH Hermite interpolants which is described below,

the following Lemma proved in [9, section 3.2] is essential.

Lemma 1. For a given pure quaternion c, which is not a negative multiple of i,
all solutions of the equation

A iA∗ = c (8)

are expressed as

A(φ) =
√

|c|
c
|c| + i

∣

∣

∣

c
|c| + i

∣

∣

∣

Q(φ), φ ∈ [0, 2π). (9)

If c is a negative multiple of i, then a suitable limit of the formula (9) must be
taken.

2.2 Pythagorean Hodograph curves

The hodograph of a space curve p(t) = [x(t), y(t), z(t)]> of degree n is the curve
h(t) = [x′(t), y′(t), z′(t)]> of degree n − 1, where ′ denotes the first derivative.
Recall that a polynomial curve is called Pythagorean Hodograph (PH), if the
length of its tangent vector depends in a (piecewise) polynomial way on the
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parameter. In particular p(t) = [x(t), y(t), z(t)]> is called space PH curve if
there exists a polynomial σ(t) such that

x′(t)2 + y′(t)2 + z′(t)2 = σ2(t). (10)

If gcd(x′(t), y′(t), z′(t)) is a square, then equation (10) holds if and only if there
exist polynomials u(t), v(t), p(t), q(t) such that

x′(t) = u2(t) + v2(t) − p2(t) − q2(t),
y′(t) = 2u(t)q(t) + 2v(t)p(t),
z′(t) = 2v(t)q(t) − 2u(t)p(t),
σ(t) = u2(t) + v2(t) + p2(t) + q2(t),

(11)

see [4]. This result can be reformulated using quaternions [2, 10]. Any spatial
polynomial curve p(t) = [x(t), y(t), y(t)]> is identified with the pure–quaternion–
valued function p(t) = x(t)i+y(t)j+z(t)k. The PH curves are then characterized
as follows.

Lemma 2. Let p(t) = x(t)i+y(t)j+z(t)k be a space polynomial curve, such that
gcd(x′(t), y′(t), z′(t)) is the square of a polynomial 1. Then p(t) is PH if and only
if there exists a quaternion-valued polynomial A(t) = u(t) + v(t)i + p(t)j + q(t)k
such that

h(t) = A(t) iA∗(t). (12)

The arc length function of the PH curve is a polynomial obtained by integrating
|A(t)|2 = A(t)A∗(t).

Consequently, the construction of a PH curve is reduced to the construction
of a suitable curve A(t). This curve will be called the preimage.

3 C
1 Hermite interpolation by space quintics

Following [9], we construct a spatial PH curve p(t) which matches given C1

Hermite boundary data. More precisely, the curve is to interpolate the end points
p0, p1 and the tangent vectors (or derivation vectors) t0, t1. The cases t0 = 0 or
t1 = 0, and t0 = −t1, which correspond to singular points at the segment end
points, and to antiparallel tangent vectors of the same lengths, will be excluded.

3.1 Construction of the interpolants

Two curves p(t), p̃(t) share the same hodograph if and only if they differ only
by translation. Consequently a space PH curve p(t) is fully determined by the
preimage A(t) and by the location of its starting point p(0).

The position of p0 can be matched by a suitable choice of the integration
constant. The remaining 3 · 3 = 9 conditions must be satisfied by choosing the

1 This includes the generic case gcd(x′(t), y′(t), z′(t)) = 1.
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control points of the preimage A(t). Hence, the degree of A(t) has to be at
least 2, yielding 3 · 4 = 12 free parameters. As shown in [10], the representation
preimage → hodograph (12) has one dimensional fibers. Therefore one can ex-
pect that there will be a two dimensional system of PH interpolants of degree
2 · 2 + 1 = 5.

We will use the Bernstein-Bézier representation [16] of the hodograph h(t) =
p′(t) and the preimage A(t):

h(t) =

4
∑

i=0

hiB
4
i (t), A(t) =

2
∑

i=0

AiB
2
i (t), t ∈ [0, 1], (13)

where hi (pure quaternions) and Ai (quaternions) are the control points and
Bn

j (t) =
(

n
j

)

tj(1 − t)n−j are the Bernstein polynomials. The interpolation con-
ditions lead to the equations

h0 = t0, h4 = t1, and
1

5

4
∑

i=0

hi = (p1 − p0), (14)

which have to be satisfied by the control points of the hodograph. After express-
ing them in terms of the control points of the preimage curve, and a suitable
re–arranging, one arrives at the following system of equations [9]:

A0iA∗
0 = t0, A2iA∗

2 = t1, (15)

and
(3A0 + 4A1 + 3A2)i(3A0 + 4A1 + 3A2)

∗ =
120(p1 − p0) − 15(t1 + t0) + 5(A0iA∗

2 + A2iA∗
0).

(16)

These three equations have the form (8). From (15) we get two 1–parametric sys-
tems of solutions A0(φ0) and A2(φ2) of the form (9) (step 1). After substituting
them into (16), we get (step 2) a 3-parametric system of solutions A1(φ0, φ1, φ2).

Summing up, we arrive at a three-parametric system of suitable preimages

A(t) = A0(φ0)B
2
0(t) + A1(φ0, φ1, φ2)B

2
1(t) + A2(φ2)B

2
2(t). (17)

However, as observed in [9], the resulting PH curve depends only on the differ-
ences of the angular parameters φ0, φ1, φ2, and therefore the preimages with a
fixed value of φ1 still give all possible PH interpolants. We fix φ1 = 0 and denote
the system of preimages as Aφ0,φ2

(t). 2

The quintic PH interpolants are obtained from

pφ0,φ2
(τ) = p0 +

∫ τ

0

Aφ0,φ2
(t)iA∗

φ0,φ2
(t) dt. (18)

As a first example, Figure 1 shows some representatives of the system of all
PH quintic interpolants to the data

p0 = (0, 0, 0)>, p1 = (1, 0, 0)>, t0 = (3, 3, 0)>, t1 = (3, 3, 0)>. (19)

Note, that while this data are in fact planar (since it is contained in the xy

plane), most interpolants are truly spatial curves.

2 Any fixed value of φ1 gives equivalent results. In [9] authors choose φ1 = −π/2.
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Fig. 1. The system of space PH quintic interpolants to given data. 64 repre-
sentatives are plotted, along with their projections into the xy and yz planes
(gray lines). The end-point tangent vectors are also shown, scaled by 1/4.

3.2 Invariance of interpolants

For any given Hermite data p0, p1, t0, t1, the system {pφ0,φ2
(t) |φ0, φ2 ∈ [0, 2π)}

represents all PH Hermite interpolants. Therefore, it is invariant [10] with respect
to orthogonal transformations (including reflections).

More precisely, if we apply an orthogonal transformation Ξ to the Hermite
data, we get modified data p̃0, p̃1, t̃0, t̃1. The associated systems of interpolants
then satisfy

{p̃φ̃0,φ̃2
(t) | φ̃0, φ̃2 ∈ [0, 2π)} = Ξ({pφ0,φ2

(t) |φ0, φ2 ∈ [0, 2π)}).

On the other hand, this transformation does not preserve the parameteriza-
tion of the solutions: In general

p̃φ̃0,φ̃2
(t) = Ξ(pφ0,φ2

(t)) (20)

is not valid for φ̃0 = φ0, φ̃2 = φ2.
The relation between φ0, φ2 and φ̃0, φ̃2 ensuring (20) is rather complicated [9].

Still, it can be formulated easily in the following cases.

Lemma 3. For any φ0, φ2:

1. If Ξ is a rotation about the i-axis, then

p̃φ0,φ2
(t) = Ξ(pφ0,φ2

(t)).

2. If Ξ is a reflection with respect to a plane containing the i-axis, then

p̃φ0,φ2
(t) = Ξ(p−φ0,−φ2

(t)).
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Proof. Consider fixed values of φ0, φ2 and let A0,A1,A2 denote the control
points of the preimage for some data p0, p1, t0, t1 and Ã0, Ã1, Ã2 for the
transformed data p̃0 = Ξ(p0), p̃1 = Ξ(p1), t̃0 = Ξ(t0), t̃1 = Ξ(t1).

1) Any rotation can be expressed using formula (6). If Ξ is rotation about
the i-axis through angle θ, then for any vector c we have

Ξ(c) = Q(
θ

2
)cQ(−θ

2
). (21)

The right-hand side of the previous equation allows to extend the transformation
Ξ from pure quaternions to all quaternions. Because of the form of the equations
(9) and the fact that Q(φ)Q( θ

2 ) = Q( θ
2 )Q(φ),

Ã0 = Ξ(A0), and Ã2 = Ξ(A2). (22)

Now using (21) and (22)

(Ã0iÃ∗
2 + Ã2iÃ∗

0) = Ξ(A0iA∗
2 + A2iA∗

0). (23)

Consequently, in step 2, the right-hand side of equation (16) for the transformed
data is equal to the transformed right-hand side of this equation for the original
data. Hence,

Ã1 = Ξ(A1) and thus for the whole preimage curve Ã(t) = Ξ(A(t)). (24)

Finally

p̃(τ) = p̃0+

∫ τ

0

Ã(t)iÃ∗(t) dt = Ξ(p0)+

∫ τ

0

Ξ(A(t)iA∗(t)) dt = Ξ(p(τ)). (25)

2) Due to the first part of the lemma, it suffices to consider only the reflection
Ξk with respect to the i, j plane. Indeed, any other reflection with respect to a
plane containing the i axis can be obtained as a composition of Ξk and two
rotations about the i axis.

Ξk can be extended to all quaternions setting

Ξk(a + bi + cj + dk) = −a + bi + cj − dk. (26)

A direct computation confirms, that formulas (22)-(25) are still valid, if the
control points Ãi are constructed with parameters −φ0,−φ2, while the control
points Ai are constructed with the parameters φ0, φ2. ut

A fully invariant parameterization of interpolants is obtained by considering
a standard position.

Definition 1. The C1 spatial Hermite data are said to be in a standard position,
if t0 + t1 is a positive multiple of i, and p0 = 0.

From now on, we will use the following parameterization of the system of
interpolants.
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Definition 2. The system of interpolants is parameterized by the two parame-
ters φ0, φ2, as follows. First we transform data to a standard position, where we
construct the interpolants pφ0,φ2

(t), as described before. Finally, we transform
the solution back to the original position.

Note that parameterization is well–defined, since Lemma 3 ensures that the
particular choice of a standard position (which may vary by a rotation about i

axis) does not matter.

Theorem 1. The parameterization of the solutions, according to Definition 2,
is invariant with respect to rigid body motions (special orthogonal transforma-
tions), whereas reflections change the signs of both parameters. Consequently,
the solution p0,0(t) is invariant with respect to all orthogonal transformations.

The proof results from Lemma 3.
In addition, the parameterization of the solutions is symmetric in the follow-

ing sense.

Theorem 2. Let pφ1,φ2
(t) be the interpolants of data p0,p1, t0, t1 and p̄φ0,φ2

(t)
the interpolants of the ”reversed” data p̄0 = p1, p̄1 = p0, t̄0 = −t1, t̄1 = −t0.
Then for any φ0, φ2

p̄φ0,φ2
(1 − t) = p−φ2,−φ0

(t). (27)

Proof. Suppose that the given data to be in a standard position, i.e. t0 + t1 is
a positive multiple of i and p0 = 0. The reversed data can be transformed into
a new standard position by the translation of the vector −p1 and the rotation
given as composition of the the symmetry S : c → −c and reflection Ξk (26). In
fact, S already transforms the reversed data into a standard position, but it is
not a rotation (det(S) = −1).

The standard position associated with the reversed data differs from the
original data only by swapping t0 and t1 and by the reflection Ξk. The theorem
then follows from the symmetry of the system of equations (15)-(16) with respect
to A0 and A2, and from the second part of Lemma 3. ut

4 Qualitative analysis of the interpolants

In this section we give a qualitative analysis of the system of PH quintic inter-
polants, in order to identify the ‘best’ values of the parameters φ0, φ2. These
parameters yield the interpolants suitable for applications.

4.1 Asymptotic behavior

In order to fix the free parameters φ0, φ2, we will now study the asymptotic be-
havior of the solutions pφ0,φ2

(t). More precisely, we assume that the C1 Hermite
data are taken from a small segment of an analytical curve, and we investigate
the asymptotic behavior of the solutions for decreasing step-size.
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We assume that the curve is given by its Taylor expansion. Without loss of
generality,

C(T ) = (T +

∞
∑

i=2

xi

i!
T i,

∞
∑

i=2

yi

i!
T i,

∞
∑

i=2

zi

i!
T i)> (28)

with arbitrary coefficients x2, x3, . . ., y2, y3, . . . and z2, z3, . . ..

For any step–size h, we pick the segment c(t) = C(ht), t ∈ [0, 1]. This segment
has the expansion

c(t) = (th +
∞
∑

i=2

xi

i!
tihi,

∞
∑

i=2

yi

i!
tihi,

∞
∑

i=2

zi

i!
tihi)>. (29)

Now we interpolate the C1 Hermite boundary data at the points c(0) = C(0) and
c(1) = C(h). Depending on the interval size h, different PH curves interpolating
the data behave as described in the following Theorem.

Theorem 3. The error of the PH interpolation

max
t∈[0,1]

||c(t) − pφ0,φ2
(t)|| (30)

converges to 0 as O(h4) if and only if φ0 = φ2 = 0. Otherwise it converges to 0
only as O(h1).

Proof. The proof consists in evaluating power series of all quantities occurring in
the interpolation process with respect to the step size h. This can be done by a
suitable computer algebra tool. Due to the space limitation and the complexity
of the expressions, we show only the leading terms of certain quantities, in order
to illustrate the idea of our approach.

First, we derive the Taylor expansions of the Hermite boundary data at t = 0
and t = 1 of the curve (29),

p0 =





0
0
0



 p1 =





h + 1
2x2h

2 + 1
6x3h

3 + . . .
1
2y2h

2 + 1
6y3h

3 + . . .
1
2z2h

2 + 1
6z3h

3 + . . .





t0 =





h

0
0



 t1 =





h + x2h
2 + 1

2x3h
3 + . . .

y2h
2 + 1

2y3h
3 + . . .

z2h
2 + 1

2z3h
3 + . . .



 .

(31)

This data can be transformed into a standard position by a rotation

U =







1 − y2
2+ z2

2

8 h2 + . . .
y2

2 h + y3−y2x2

4 h2 + . . . z2

2 h + z3−z2x2

4 h2 + . . .

−y2

2 h − y3−y2x2

4 h2 + . . . 1 − y2
2

8 h2 + . . . 0

− z2

2 h − z3−z2x2

4 h2 + . . . − z2y2

4 h2 + . . . 1 − z2
2

8 h2 + . . .






.
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Then we compute the Taylor expansions of the control points of the preimage
for the transformed data U(p0), U(p1), U(t0), U(t1). Using (9) we obtain

A0(φ0) = −
√

h[sin φ0 + . . . ] +
√

h[cosφ0 + . . . ]i−
√

h[y2 cos φ0+z2 sin φ0

4 h + . . . ]j

−
√

h[ z2 cos φ0−y2 sin φ0

4 h + . . . ]k,

A2(φ2) = −
√

h[sin φ2 + x2 sin φ2

2 h + . . . ] +
√

h[cosφ2 + x2 cos φ2

2 h + . . . ]i

+
√

h[y2 cos φ2+z2 sin φ2

4 h + . . . ]j +
√

h[ z2 cos φ2−y2 sin φ2

4 h + . . . ]k
(32)

(step 1). In step 2 (with the fixed choice φ1 = 0) we obtain the expansion of A1,
involving both φ0, φ2. We omit it here since even the leading terms are rather
complicated.

Finally we are able to express the Taylor expansion of the PH interpolant
pφ1,φ2

(t), which is again a long expression. Still, the leading term of its x com-
ponent is equal to

[

t+ 1
2

(

cos (φ0)
√

10 cos(φ2−φ0)+90−3cos(φ2−φ0)−7
)

t2

−1
2

(

[3 cos (φ0) + cos (φ2)]
√

10 cos(φ2−φ0)+90−12cos(φ2−φ0)−28
)

t3

+1
2

(

[3 cos (φ0) +2 cos (φ2)]
√

10 cos(φ2−φ0)+90−15cos(φ2−φ0)−35
)

t4

−1
2

(

[cos (φ0) + cos (φ2)]
√

10 cos(φ2−φ0)+90−6 cos(φ2−φ0)−14
)

t5
]

h.

(33)

Comparing this series with (29), we see that the coefficients at t2, t3, t4, t5 in
(33) must be zero if the interpolant pφ1,φ2

(t) should match the the shape of c(t)
and the error (30) should converge to 0 faster then O(h). Solving the system
of trigonometric equations it can be shown, that this is achieved if and only
if φ0 = φ2 = 0. Using these values, the Taylor expansion of p0,0(t) simplifies
enormously, and matches the Taylor expansion of c(t) up to h3. ut
Remark 1. Though the proof Theorem 3 seems to be complicated, it is in fact
a straightforward computation. It would be interesting to proof a more general
result stating that any C1 Hermite interpolation satisfying certain conditions
always leads to approximation order 4, as it is the case for Hermite interpola-
tion by Bézier cubics and PH quintics p0,0(t). This may be a subject of future
research.

Remark 2. In Theorem 3 we considered only constant values of φ0 and φ2, which
do not depend on the the step size h. It may also be interesting to choose these
parameters depending on the step-size. Thus φ0(h), φ2(h) would be functions of
h. In this more general setting we still can study the asymptotic behavior. It is
only necessary to replace the constants φ0, φ2 by abstract Taylor series of the
functions φ0(h), φ2(h). We obtained the following result about the approximation
order.

The error of the PH interpolation

max
t∈[0,1]

||c(t) − pφ0(h),φ2(h)(t)||

is equal to O(h4) if and only if
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1. lim
h→0

φ1(h) = lim
h→0

φ2(h) = 0 and

2. φ′
2(0) = −φ′

0(0).

If only the first condition holds, the error of the approximation equals O(h3).
If 1. is not satisfied, then the error equals O(h1).

Remark 3. The interpolant p0,0(t) has the following interesting property. If φ0 =
φ1 = φ2 = 0, then the control points A0, A1, A2 are pure quaternions, and
therefore the whole preimage A(t) is pure-quaternion valued. This corresponds
to setting u(t) = 0 in the representation formula (11), which then becomes

x′(t) = v2(t) − p2(t) − q2(t),
y′(t) = 2v(t)p(t),
z′(t) = 2v(t)q(t),
σ(t) = v2(t) + p2(t) + q2(t).

(34)

This incomplete description of PH curves was used first in [5]. The optimal solu-
tion p0,0(t) is therefore given by transforming the curve into standard position
and constructing one of the interpolants of the form (34).

4.2 Preservation of planarity

As a natural question, one may ask which interpolants pφ0,φ2
are planar for

planar input data.
C1 Hermite interpolation by PH quintics in the plane is well understood. It

has been shown, that for any non-degenerated planar data there are four planar
PH quintic interpolants [6], which have been in [20] labeled as (++), (+−),
(−+) and (−−). In the following new result we identify them among the two
parameter family of spatial interpolants.

Theorem 4. For any input data p0, p1, t0, t1 lying in a plane, the four inter-
polants p0,0(t), p0,π(t), pπ,0(t), pπ,π(t) are planar. They can be identified in the
following way with the interpolants in [20]:

p0,0(t) = (++), p0,π(t) = (+−), pπ,0(t) = (−+), and pπ,π(t) = (−−). (35)

Proof. We suppose that the input data lie in the i, j plane, which we will denote
with Qij. We define on the quaternions the commutative multiplication

U ? V :=
1

2
(U iV∗ + V iU∗). (36)

One can verify directly, that (Qij, ?) ' C. Under this isomorphism, the equations
(15)-(16) become the complex equations characterizing PH interpolation in plane
(equations (3)-(4) of [20]).

Obviously, for the choice φ0 = 0, resp. φ0 = π, the control point A0 is in Qij

and correspond to the complex square root of t0 with positive, resp. negative
real part, which is precisely the principle of the labeling used in [20]. Similarly
for A2 and φ2. Then also A1 ∈ Qij and the correspondence (35) holds. ut



12

0
0.5

1
1.5 –0.6

–0.4
–0.2
0
0.2
0.4
0.6

–0.6
–0.4
–0.2

0
0.2
0.4
0.6

Fig. 2. Planar interpolants of Hermite data (19). The interpolant p0,0 is plot-
ted in bold. Projections to xy and yz plane are plotted in grey.

Figure 2 shows the four planar interpolants p0,0(t), p0,π(t), pπ,0(t), pπ,π(t)
to the planar data (19) (see also the previous figure). Note that the projections
(grey) into the yz plane collapse into line segments.

5 Applications

We apply the previous results in order to design an algorithm converting any
analytical curve into a piecewise PH quintic curve. This conversion is then used
for approximation of pipe surfaces.

5.1 Conversion of analytical curves

The result described in Theorem 3 allows us to design an algorithm for the
conversion of any analytical curve into a piecewise PH curve. Let the param-
eter domain of the analytical curve be [0, 1]. We split this interval into the 2n

subintervals [ i
2n

, i+1
2n

], i = 0..2n − 1. For each subinterval, we construct the PH
Hermite interpolant p0,0(t) and obtain a C1 continuous piecewise PH curve of
degree 5. If the error from the original analytical curve is not sufficiently small,
we continue the subdivision. Due to the Proposition 3, the error will converge
to 0 as O

(

1
16n

)

under subdivision.
The relatively high rate of convergence is demonstrated by the following

example. Figure 3 shows the segment of the analytical curve

c(t) = (1.5 sin(7.2t), cos(9t), ecos(1.8t))>, t ∈ [0, 1]. (37)

We construct the PH Hermite interpolant for the whole segment and the piece-
wise PH interpolants obtained after splitting the parameter into 2, 4, 8, ... ,512
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Fig. 3. Approximate conversion of an analytical curve (bold line) via C1 Her-
mite interpolation by PH curves, obtained after splitting the parameter do-
main into 1, 2, 4 and 8 segments. The difference between the curves is almost
invisible in the last case. In addition to the curve its projection into xy plane
is plotted (gray line).

subintervals. The maximal approximation error and its improvement (ratio) in
each step are shown in Table 1.

Clearly, instead of the simple uniform subdivision, using an adaptive subdi-
vision scheme would reduce the number of segments.

5.2 Approximation of pipe surfaces

PH curves possess a simple low degree rational adapted frame, which has been
called the Euler-Rodrigues frame in [3]. Based on this construction, Farouki
proposed a rational approximation of the rotation minimizing frame for any
space PH curve [13].
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#Segments Error Ratio #Segments Error Ratio

1 2.429 32 1.941 10−4 10.67×

2 1.384 1.76× 64 1.337 10−5 14.52×

4 1.553 10−1 8.91× 128 8.523 10−7 15.68×

8 2.399 10−2 6.48× 256 5.376 10−8 15.85×

16 2.070 10−3 11.59× 512 3.361 10−9 16.00×

Table 1. Error of piecewise quintic PH approximation via Hermite interpolation.

Both frames can be used for the approximation of pipe surfaces, or – more
generally – of sweep surfaces. First we convert a given analytical curve into a
piecewise PH curve using the algorithm of section 5.1 and then we construct a
pipe surface for this PH curve.

The approximation error can be defined in the following way. The exact pipe
surface with radius r can be understood as a union of circles S(t), with centers
c(t) and lying in the normal plane of c at point t. Similarly, our approximation
of the pipe surface can be seen as collection of the circles S̃(t).

For each parameter value t, we define E(t) as the Hausdorff distance of the
circles S(t) and S̃(t). Then the global error of the approximation is defined as

E = max
t∈[0,1]

E(t). (38)

Theorem 5. The approximation error E behaves as O(h3) for h → 0.

Proof. Using the triangle inequality, the Hausdorff distance between circles S(t)
and S̃(t) can be bounded as

E(t) ≤ r

∥

∥

∥

∥

∥

c′(t)

||c′(t)|| −
p′

0,0(t)

||p′
0,0(t)||

∥

∥

∥

∥

∥

+ ‖c(t) − p0,0(t)‖, (39)

where the first term represents the Hausdorff distance between two circles with a
common center and the second one is the distance between the centers. According
to Theorem 3

max
t∈[0,1]

||c(t) − p0,0(t)|| = O(h4). (40)

In a similar way one can prove that

max
t∈[0,1]

∥

∥

∥

∥

∥

c′(t)

||c′(t)|| −
p′

0,0(t)

||p′
0,0(t)||

∥

∥

∥

∥

∥

= O(h3), (41)

which concludes the proof. ut

As an example, Figure 4 shows an approximation of a pipe surface associated
with the curve (37), constructed using a piecewise PH curve composed of 8
segments (see last figure of Fig. 3).
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Fig. 4. Approximation of a pipe surface.

6 Conclusion

Starting from previous results about quintic PH curves in two and three dimen-
sions [9, 20], we analyzed the system of solutions and identified one of them,
which is suitable for applications. More precisely, it is invariant under orthogo-
nal transformations (rigid body transformations and reflections), preserves pla-
narity, it is invariant with respect to reversion of the parameter interval, and it
has the optimum approximation order. We used this solution for approximately
converting general curves into PH form and for approximation of pipe surfaces.

It should be noted that choosing this solution leads to a significant improve-
ment of the approximation order. In order to achieve the same error with other
solutions, 8 times as many intervals would be needed. Also, the shape might be
less pleasing.

As a matter of future work, we will investigate the problem of C2 Hermite in-
terpolation in three–dimensional space. According to our experience in the planar
case, the use of geometric Hermite data (points, tangent directions, curvatures)
always produces problems with specific points, such as inflections, while these
difficulties are not present for analytical data (points, first and second deriva-
tives). Consequently, the use of analytical data seems to be more appropriate.
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