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Abstract

The article is devoted to triangular Bézier surface patches with a linear
normal vector field (LN surfaces). These surface patches are shown to have
rational offset surfaces. This fact generalizes the rational offset property
of parabolas to the surface case. LN surface patches may serve as an alter-
native to surfaces with Pythagorean normals (the so—called PN surfaces,
see [17, 18]). We present a construction for triangular LN surface patches
from Hermite boundary data. The construction is suitable for building G*
surface splines.

1 Introduction

The description and the design of offsets to curves and surfaces has attracted a
great deal of attention from the geometric design community. Offsets arise in the
context of the numerical control of milling machines and layered manufacturing.
Many methods rely on approximations to the exact offsets, e.g. [1]. Recently, a
number of constructions for rational curves and surfaces with rational offsets have
emerged. Using these techniques one may develop curve and surface schemes that
make it possible to represent both a certain shape and its offsets exactly within
a CAD system.

At the beginning of these developments, the notion of Pythagorean hodograph
(PH) curves have been introduced by Farouki. These curves form a sub-class of
integral Bézier curves; they are distinguished by having rational offset curves and
a polynomial arc length function. Using complex calculus, constructions for PH
spline curves from various input data has been developed, e.g. [9, 10].

Another approach has been used by Pottmann [11, 18] in order to find a con-
struction for rational PH curves. His approach is based on the dual representation
of a planar curve (resp. surface) as the envelope of its tangent lines (resp. planes).
Using this approach, it is also possible to study rational surfaces with rational
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offsets, the so-called PH or PN (Pythagorean normal vector, see [17]) surfaces
[18]. Based on a dual representation of the unit sphere, an elegant construction of
the dual control structure for this class of surfaces has been derived by Pottmann
[18]. The recent Ph.D. thesis by Peternell [17] extends the dual approach to PH
curves and surfaces by introducing concepts from Laguerre geometry. In this
geometry, offsetting a shape is an intrinsic operation; hence Laguerre geometry
is particularly well suited for dealing with offset curves and surfaces.

The dual approach to offsets produces rational curves and surfaces. In con-
sequence of working with the dual representation, singularities (like cusps which
are dual to inflections) and points at infinity may cause considerable problems.
Also, the dual control structure seems to be very sensitive to small perturbations
of the components. So far, there seems to be no construction scheme for PN
spline surfaces available which is suitable for practical implementations.

In the present paper we introduce a new class of surfaces with rational offsets.
Triangular Bézier surface patches with a linear field of normal vectors (the so—
called LN surface patches) are shown to have rational offset surfaces. This fact
generalizes the rational offset property of parabolas [12] to the surface setting.
Unlike PN surfaces, the class of LN surface patches is invariant under affine
mappings.

As a major difference to the dual approach to PH curves and surfaces, we use
the distinguishing property of the linear normal field as a linear constraint onto
the linear space of integral triangular Bézier patches. In addition, the LN surface
is an integral patch, but its offset surfaces are truly rational surfaces. That is,
we design an integral patch which is embedded into a family of rational offset
surfaces. We think that there are good prospects that LN surface splines can be
developed into a tool which is suitable for practical implementations, because our
methods are simply based on integral patches and linear spaces of functions.

In the first section of this article we give a brief discussion of curves with a
linear normal vector field. This section is intended to serve as motivation for
the following section which is devoted to LN surface patches. Finally we present
a construction of LN patches from Hermite boundary data which illustrates the
potential of the new surface scheme.

2 DMotivation: Curves with linear normals
Consider an integral (i.e. a polynomial) quadratic curve segment,

x(t) = py + Pyt + Pyt t € 1[0,1], (1)

in the plane R?. The curve is assumed to be given by its monomial represen-
tation (with respect to the power basis 1, ¢, t?) with certain coefficient vectors
Py, ---,Py € R2. Both components of x(t) are quadratic polynomials of the



parameter t. For instance, any quadratic Bézier curve (see [13]) has such a rep-
resentation.

It is a well-known fact that integral quadratic curves are either segments
of lines or of parabolas. In order to find the offset (or parallel) curves to the
quadratic (1), we compute the first derivative vector x(¢) and the non—normalized

normal vector N(¢),
X(t) =p, +2p,t, and N(t)=pi +2p;t. (2)

Here, we denote with x* the vector which is obtained after rotating x by 90

degrees,
i
L_ (™1 _ [ —22

The offset (or parallel) curve of the quadratic (1) at distance d has the parametric
representation

xa(t) = x(t) + —=—N(t) (4)
IN@)l
with the norm
”N(t)“ = \/4 (P2, P2) * + 4 (P1, P2) t + (P15 P1) (5)
of the normal vector. Here, (.,.) (resp. [.,.]) is the standard inner product

(resp. exterior product, i.e., the determinant) of two vectors from R?. Clearly, the
coordinates of offset curves (4) are generally not rational functions of the curve
parameter ¢, owing to the square root in the denominator. The offset curves to
a parabola, however, are known to be rational curves, see [12, 15].

In order to find a rational parametric representation of the offset curves, we
apply the substitution #(s) = 7(s)/o(s) to the offset curves, where 7(s) and o(s)
are certain rational functions of the new curve parameter s. This gives

IN(t(s)ll = VE(0,7) / lo(s)|
with  K(o,7) =4 (Ps, P2) 7'(5)2 +4(p1, Py) T(5)o(s) + (P1, P1) 0(3)2-

Now consider the curve K(o,7) = 1 in the or—plane. It is an implicit quadratic
curve, i.e., a conic section. If the coefficient vectors p,, p, are linearly independent
(i.e., [Py, Ps] # 0), then the conic turns out to be an ellipse which is centered at
(0,0). (Otherwise the quadratic (1) degenerates into a straight line segment.)
Thus, one may easily find quadratic polynomials 7¢(s), oo(s) and p(s) such that
T =19/p and 0 = 0p/p is a rational parametric representation of the ellipse, i.e.
the identity

K(oo(s)/p(s),m0(s)/p(s)) =1,  seR, (6)
holds. For more information concerning rational parameterizations of conics the
reader should consult [7, 13].



Owing to (6) we have ||N(¢(s))|| = |p(s)/o0(s)|. Thus, by applying the sub-
stitution t(s) = 7(s)/o(s) to the offsets (4) of the quadratic we obtain rational
parametric representations with the new parameter s for these offset curves.

As the essential ingredient of this construction for rational offsets, we have
exploited the fact that the quadratic curve has a linear normal vector. One
may immediately apply the same idea to other curves with linear normals. For
instance, consider the cubic

x(t) =qy+q,t+aqyt’ +qst, telo,1], (7)

in the plane R?. Again, the curve is assumed to be given in monomial represen-
tation with the coefficient vectors qg, - ..,q; € R?. Generally, its first derivative
vector has quadratic components. However, if the first derivative vanishes for a
certain parameter value ¢ = %y, i.e. if the cubic has a cusp at ¢ = t;, then the first
derivative factors into

x(t) = (t —to) (P, +2Pat) (8)

with certain coefficient vectors p;, p, € R?. Hence, under this additional assump-
tion, the cubic has the linear normal vector N(t), see (2). Now we can use again
the above construction in order to find rational parametric representations of
the offset curves. More generally, the construction can be applied to polynomial
curves of degree n with n — 2 cusps. Unlike the class of Pythagorean-hodograph
curves (see the related publications by Farouki, e.g. [9]), the class of all curves
with a linear normal vector is invariant with respect to affine mappings.

3 Triangular LN Bézier surface patches

Now we transfer the observation from the previous section to the surface case.
In the sequel we consider an integral triangular Bézier surface patch of degree n,

x(u, v, w) Z Pijk uk u, v, w) u,v,w>0, u+tv+w =1, (9)

2,7,k >0
t+j+k=n

see [6, 13]. Its parameters u,v,w can be seen as the barycentric coordinates
with respect to some domain triangle A C R?. They will be referred to as
the barycentric parameters of the triangular patch. The coefficients p; ;, are
the control points of the surface patch. The blending functions B}'; p(u, v, w) =

n! k are the bivariate Bernstein polynomials defined over the domain

e U ‘v w
triangle A.

The first directional derivatives of the triangular Bézier patch are polynomials
of degree n — 1. We recall the formulas for the first derivatives in the three




directions which are parallel to the edges of the domain triangle,

x1(u, v, w) = %x(u,v —t,w+1t) . =n iijN) Avp; g Bl (u,0,w),
itjtk=n—1
xo(u, v, w) = %x(u +tv,w—1) . =n | ;0 JALS sz_,,i(u,v,w),
= i,k >
itjtk=n—1
x3(u,v,w) = %x(u —t,v +t,w) . =n iijN) A3p; i BZ;,%(u,v,w),

i+j+k=n—-1
with the difference vectors

A1Dijk = Pijkt1 — Pijiie  DePijr = Piyijk — Pijrins
A3pi,j,k =Pijt16 — Pit15k I k>0, i+j+k=n—-1

In addition, let
Ab; jr =0 whenever i <0orj<0Oork <0, [=1,2,3. (12)
The above three derivative vectors are linearly dependent,
x1(u, v, w) +Xa(...) +x3(...) =0 resp. A1p; ;) + Aop; x + Asp; = 0. (13)
As in the previous section we denote with (.,.) the standard inner product of

vectors in R3.

Definition. The triangular Bézier surface (9) will be called a LN surface patch
(a surface with a linear mormal vector), if there are three vectors iy, fig, 1iz € R3
such that the three inner products between the first derivative vectors (10) and
the normal vector field

—

N(u,v,w) = v 1) +v 0y + w 13 (14)
vanish identically, i.e., if the three equations
< x;(u, v, w), N(u,v,w) ) =0, 1=1,2,3, (15)

hold for all coordinates u, v, w with u+v—+w = 1. At least one of the three vectors
N, Ny, N3 is assumed to be not the null vector.

Thus, a LN surface patch has a linear field (14) of (non—normalized) normal
vectors. If the three vectors 1y, 1y, fi3 are given, then the three conditions (15)
lead to a system of linear equations for the control points p; ;. By comparing



the coefficients we obtain after some straightforward calculations the 3("“;2) linear
equations

%(ﬁl, Alpz'—l,j,k) + %(ﬁ% Alpi,j—l,k) + %(1‘1‘3, Alpi,j,k—l) =0

(16)
1,5,k>0,1+7+k=n,1=1,2,3,
see also (12). Owing to the dependency (13) between the first directional deriva-
tives, it suffices to use the equations for [/ = 1 and [ = 2. Hence, we obtain from
(16) a system of 2(";’2) equations which are sufficient conditions for a LN surface
patch.

Clearly, the orthogonality conditions (15) are rather restrictive constraints
on the possible surfaces. Nevertheless, LN surface patches still have enough
degrees of freedom to describe interesting shapes. Figure 1 shows two examples
of triangular LN Bézier surfaces of degree 6, a convex patch (left) and a non—
convex one (right). In addition to the surfaces, both pictures show the control
polygons (dashed lines) and some level curves z = const. (solid lines). Also,
the normal vectors at the three corner points have been drawn (thick light—grey
lines).

5/

Figure 1: A convex and a non—convex LN surface patch

The surface patches have been obtained from the construction which is de-
scribed in the next section. In order to avoid compatibility problems, and in order
to decouple the computation of the boundary curves from the remaining inner
control points, this construction uses triangular patches with degenerate points
at the three vertices; all first derivative vectors at these points are zero. However,
the surfaces have a well defined tangent plane everywhere, as the neighbouring
control points at the vertices satisfy certain compatibility conditions. Thus, both
patches in Figure 1 are regular surfaces, despite the singularly parameterized
vertices.

The class of LN surface patches generalizes the rational offset property of LN
curves.

Theorem. Triangular LN surface patches have rational offsets.



Proof. The offset surface to the LN surface surface patch (9) at a certain dis-
tance d has the parametric representation

d

— —~ N U, v, W), 17
[IN(u, v, w]| ( ) 7

xq(u,v,w) = x(u,v,w) +
see (14). In order to find a rational representation of the offset surface, we
introduce the new barycentric parameters r, s,t, r + s + ¢t = 1, by substituting

u(r, s, t) = p(r,s,t) | (p(r,s,t) + o(r,s,t) + 7(r,s,1) ),
v(r,s,t) =o(r,s,t) / (p(r,s,t) +o(r,s,t)+7(rs,t)), (18)
w(r,s,t) =71(r,s,t) / (p(r,s,t) +o(r,s,t) + 7(r,s,1)),

where

t t 4
p(T, S,t) — pO(T,S, ) O'(T, S,t) — 0'0(7",8, ) 7'0(7’, S, )

&(r,s,t) &(r, s,1) &(r,s,t)

Here, pg, 09, 79, and & are certain polynomials of the new barycentric param-
eters r,s,t. They can be chosen as bivariate polynomials in Bernstein—Bézier
representation with respect to a domain triangle, see [6, 13].

Consider the norm of the linear normal vector N(u, v, w). The above substi-
tution leads to

, T(r,s,t) = (19)

VE(p(r,s,t),0(...),7(...)

Nur,s,t,v...,w... = 20
IR u(r,5,8), 00, w(. ) | = Yo PR Tl (a0)
with the quadratic form
(A, 0;) (d,0) (1, 0;) p
K(p,o0,7) =(po7) | (H,10,) (fy0y) (m,1n;) g |- (21)
(dy, 1) (dp,m;) (i3, 1;) T

If the three vectors n;, ny and ns are linearly independent, then this quadratic
form is positive definite, as it satisfies Sylvester’s criterion, cf. [3, Section 8.3,
Thm. 6]. Thus, the equation

K(p,o,7) =1 (22)

describes an ellipsoid in poT—space centered at (0,0,0). If only two of the three
vectors are linearly independent, then this ellipsoid degenerates into an elliptic
cylinder. Finally, if any two of the three vectors m;, M, and n3 are linearly
dependent, then we get a double plane. In this case, however, the LN surface is
simply a planar surface patch, and its offsets are obviously rational.

In the first two cases one may construct a rational parametric representation
of the quadric surface (22). That is, we may find polynomials py, 09, 79, and &
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of the barycentric parameters r, s, ¢ such that the identity (22) is satisfied for all
barycentric parameters. The coordinates

p(T,S,t) ,00(7'; Sat)/g(ﬁ S’t)
o(r,s,t) | = | oo(r,s,t)/&(r, s, 1)
7(r,s,t) To(r, s,t) /&(ry s, 1)

describe nothing but a rational triangular Bézier patch with the barycentric pa-
rameters 7, s, ¢t on the quadric (22) in poT—space. Such patches can be constructed
with the help of the stereographic projection [2] or using the more sophisticated
techniques described in [5].

In order to cover the whole LN surface patch with the reparameterization (18),
one has to find a triangular patch which covers the octant of the ellipsoid (22) that
is bounded by the coordinate planes. For instance, a quartic rational triangular
patch that describes an octant of the unit sphere is presented in [8].

Owing to (22), the substitution (18) leads to

_ £(r.5.1)
P07, 5,0) + 0o(-) + 7ol )|

| N(u(r, s, t),v(...), w(...)]

(23)

Hence, combining this result with (17) we obtain rational parametric representa-
tions of the offset surfaces. []

The so called Pythagorean-hodograph (PH; also called Pythagorean normal vec-
tor, PN) surfaces form another class of surfaces with rational offsets, see [17, 18].
These surfaces are not invariant under affine mappings; in general, the affine im-
age of a PH surface is not again a PH surface. Clearly, one would not expect to
have such an invariance property, as affine transformations and the offsetting op-
eration do not commute. For LN surface patches, however, there is the following
result:

Proposition. The class of LN surface patches is invariant under affine map-
pings.
Proof. Consider a regular affine transformation of R?,

x— Ui+ Ax, (24)

with the translation vector @ € R® and the non-singular real 3 x 3-matrix A.
The image @ + Ax(u,v,w) of the triangular LN surface patch (9) has the first
derivative vectors Ax;(u,v,w), I = 1,2,3. Thus, the vectors A*ﬁ(u,v,w) (see
(14)) form a linear normal vector field of the image surface, as

—

(Ax;, A7'N) = (Ax)T(A7'N) = x/ N = (x;,N) (25)

holds. [ ]



In order to develop LN surfaces into a tool which is suitable for practical imple-
mentations, it will be most important to find criteria that guarantee the regularity
of the surface patches. (The triangular patch (9) is said to be regular at a point,
if the first derivatives x;(u,v,w) and Xs(u,v,w) are linearly independent.) A
detailed discussion of regularity criteria is beyond the scope of the present paper.
However, we outline an idea that may help to develop such criteria.

Once a LN surface has been constructed, then the cross product of the first
derivatives x; (u, v, w) and Xo(u, v, w) is always linearly dependent on the linear
normal vector field N(u, v, w). Thus, there is a bivariate function ¢(u, v, w) such
that

x1 (1, v, w) X Xa(u, v, w) = ¢(u, v, w) N(u, v, w) (26)
holds for all barycentric parameters u, v, w. If the vectors 1, ny, i3 are linearly
independent, then ¢(u, v, w) is guaranteed to be a bivariate polynomial. This can
easily be concluded by comparing the zeros of the three coordinates of ﬁ(u, v, w)
and x;(u,v,w) X xa(u,v,w). If the polynomial ¢(u,v,w) is strictly positive in
the interior of the domain triangle, and if the linear normal vector field does
not vanish (this is automatically guaranteed if the three vectors i;, fiy and 1j
are linearly independent), then the LN surface patch (9) is regular at all inner
points. Currently we are trying to develop a construction of LN spline surfaces of
relatively low degree, where it is possible to compute the polynomials ¢ explicitly
as functions of the input data, with the help of some computer algebra tools.

The observation (26) may also be helpful in order to find geometric criteria for
LN surface patches. Generally, the normal vector field of a quadratic triangular
Bézier patch (9) has degree 2. However, if the patch degenerates along a line in
the parameter domain (for instance, if the control points of one of the boundaries
are identical), then the normal factors into a linear vector field (14), multiplied
with a linear polynomial ¢(u,v,w). The triangular patch is then a LN surface.
See also [4] for a geometric classification of quadratic triangular Bézier surfaces.

4 A construction of triangular LN patches from
Hermite boundary data

In the final section we present a construction of triangular LN surface patches
from given boundary data. The construction can be used in order to build G*
surface splines.

Consider three points v, vo, v3 € R® with associated normal vectors i, fig,
n3. We want to find a triangular LN surface patch with the three vertices vy, va,
vz which has the linear normal vector field (14). Our construction proceeds in
two steps.

1.) Firstly we construct the three boundary curves of the LN patch. In order to
make the construction suitable for building G surface splines, the control points
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of each boundary are to be independent of the opposite vertex and normal vector.
For instance, the boundary which joins v; and vy should solely depend on the
data vy, 1y, vo, and 1y. In addition, the construction has to be symmetric in
these data. If these requirements are satisfied, then any two LN patches sharing
the boundary data vy, fi;, Vo, and i, will automatically meet with G' continuity
along the common boundary.

2.) In the second step we fill in a patch having the prescribed normal vector field
(14). In order to find this patch, one has to take care of certain compatibility
conditions, both at the vertices and along the boundaries, see below.

Before describing the steps of the construction in somewhat more detail, we derive
two types of compatibility conditions.

4.1 Compatibility at the vertices

The triangular LN surface patch satisfies the conditions (N, x1) = 0 and (N, X2) E.
0. Differentiating these identities we obtain

(Ny,x1) + (N, x12) = (N1, %) + (N, x35) = 0,

hence . .
(N1, x3) = (Ng, x1). (27)
Here, the lower indices denote the directional derivatives in directions which are
parallel to the edges of the domain triangle, see (10).
Consider the vertex v3 = x(0,0, 1) of the LN surface patch. The directional
derivative x1(0,0,1) (resp. x2(0,0,1)) is the first derivative vector of the bound-
ary joining the vertices vy (resp. vq) and vs. On the other hand,

N, = fi; — fi, and Ny = fi; — fis.

We have to choose the boundary curves such that the compatibility condition (27)
is satisfied. The construction of each boundary, however, is to depend solely on
the data at its end vertices. In order to satisfy the above compatibility conditions
we use singular points at the vertices, i.e. x1(0,0,1) = x5(0,0,1) = 0. The use of
singular points is quite popular for constructing surface splines, see [16] and the
references cited therein. In our case, the singular point at v3 = x(0,0, 1) entails
the coinciding control points

V3 = Po,on = P1,on-1 = Po,1n—1- (28)

As we want to obtain a surface patch with a well-defined tangent plane at
x(0,0,1), despite the singular parameterization, the control points

Po,ons P2on—2 P11n—2 and Po,2n—2 (29)

have to be contained within one plane. For LN surface patches with singular
vertices, this compatibility condition is automatically satisfied, as these patches
fulfill the condition (15).
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4.2 Compatibility along the boundaries

In order to derive another compatibility condition, we consider the LN surface
patch (9) in the monomial representation which is obtained after eliminating the
barycentric parameter w =1 —u — v,

yv(u,v) = x(u,v,1—u—0v)
= a,u"+a, v +...+au+a
+ (bpru™ 4+ by ou®2+...+biu+hbg)v
+ ()Pt

The coefficients a;, b, ..., € R? are certain linear combinations of the control
points p; ; ;. Similarly we obtain for the normal vector field

(30)

M(u,v) = N(u,v,1 — u — v) = Mg + My u + My . (31)

The coefficients m; € R?, are certain linear combinations of the given normal
vectors n;.
We assume that the boundary curve v = 0, i.e. x(t,0,1 — ¢), of the LN

surface patch has been constructed somehow. Thus, the coefficients ay,...,a,
are already known; they satisfy the LN condition
a — — —
(=y,M) =(na,t" ' +...+a;, myg+mt)=0, (32)
Ou (wi)=(10)

see (15). Now we want to find a LN surface patch with this boundary curve. Of
course, the patch has to satisfy the remaining orthogonality condition (15) along
the boundary,

—

M)

(%y, E(bnfltn_l—{—...—%bo, Iﬁ0+ﬁ11t)50 (33)

(uzv):(tzo)

In particular, by comparing the coefficients of t* we obtain the condition (b,_1, m;) =|jjj
0. On the other hand, differentiating the LN condition (%y, M) = 0 with re-

spect to v gives

00 =

0 0 -~

M) =0, (34)

+ ( a3 Y5
Ou™" 0v " 0)=r0)

(u,0)=(t,0)

hence
((n—l)bn_ltn_2+...+b1, l’fllt-i-l'flo)

o 35
+(na,t" ' +...a;, my) =0. (35)
Comparing the coefficients of t"~! we arrive at the compatibility condition
(n — 1) (bnfl, 1’?11) +n (an, Iflg) = 0. (36)
————

=0
Thus, the leading coefficient a,, of the boundary curve has to satisfy (a,, my) = 0.
In order to fulfill this condition automatically, we choose the boundary curves of
a LN surface patch of degree n as Bézier curves of degree n—1, i.e. we set a,, = 0.
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4.3 Construction of the boundary curves

Consider the boundary curve joining the vertices v; and vy. It is constructed as
a quintic Bézier curve with double boundary control points,

x(1 —t,t,0) = vi(By(t) + B3(t)) + by B3(t) + b3 B3 (t) + va( B3 (t) + B2(t)),

with the univariate Bernstein polynomials Bf'(t) = (7)t!(1 — t)"~*. By choosing
double control points at the boundaries we satisfy the first compatibility condi-
tion. The inner control points by, by € R® are as yet unknown.

Owing to (15), the boundary curve has to satisfy the LN condition

( %Xu —,4,0), N(1—¢,£,0)) =0, (37)

or, equivalently,
( (by—v1) Bi(t) + (b3—by) By(t) + (vo—bs) B3 (t), (1—t) @i, +tiiy ) =0. (38)

By comparing the coefficients of the curve parameter ¢, we obtain a system of 4
linear equations for the 6 unknown components of the middle control points by
and bs. Among the solutions of this system, we choose the one which minimizes
the quadratic objective function

F(by, bs) = || — va 4 bs||* + [[va — 2bg + by + ||bs — 2by + v1||* + ||bo — v4]|%.

This function measures the sum of the squared lengths of the control polygon for
the second derivative vector of the boundary curve. Clearly, one might also use
more sophisticated functionals in order to find the boundaries. Such function-
als have been introduced for constructing so—called minimum-norm—network of
boundary curves connecting given data, see [13, 14].

The solution by, bs to the constrained quadratic optimization problem F'(bs, bs) — |}
Min subject to (38) can be computed with the help of Lagrangian multipliers.
This leads to a system of linear equations for the middle control points. Using
computer algebra tools it is even possible to find explicit formulas for the inner
control points in terms of the given data. A unique solution can be shown to
exist, provided that the given normal vectors 1i; and iy are linearly independent.

Analogously we compute the control points along the remaining two bound-
aries, joining the vertices v; (resp. vy) with vs.

4.4 Filling—in the patches

We compute a LN surface patch of degree n = 6 which matches the given ver-
tices vy, Vo, v3 and the normal field (14). Firstly we raise the degree of the
Bernstein—Bézier representation of the three boundaries from 5 to 6. This leads
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to the control points (p; ;)i+j+k=6 along the boundaries. Owing to the construc-
tion of the boundaries and to the degree elevation, both compatibility conditions
are automatically satisfied. The first one (27) is fulfilled as the first derivative
vectors at the three vertices vanish. The second one (36) is satisfied, because the
boundary curves of the sextic patch are chosen as quintic curves.

We compute the inner control points p; ;, by solving a system of linear equa-
tions. From (16) we obtain certain linear equations that guarantee the property
(15) of the LN patch. After eliminating dependencies we obtain a system of 29
equations for 30 unknowns (the components of the inner control points). Among
its solutions we choose the one which minimizes the quadratic objective function

Z ((A1)?+ (A2)” + (A3)%) Pijn- (39)
iyj k>0
i+j+k=n—-2

Similar to the construction of the boundary curves, this objective function is the
sum of the squared lengths of the control polygons for the second directional
derivative vectors, cf. (10). In this case, however, we cannot recommend using
Lagrangian multipliers, as this technique would almost double the size of the
system of equations. It is more appropriate to compute the set solution of the
system (16) firstly, and then to pick the particular solution that minimizes the
objective function.

4.5 An example

Two examples of surfaces that can be obtained from the above construction
have already been presented in Figure 1. Here we show another example which
demonstrates that the construction is suitable for building surface splines. Two
adjacent LN surface patches have been constructed by interpolating four data
points with associated normal vectors (shown by the thick grey lines). Along the
common boundary, the patches meet with G* continuity, since both the boundary
curve and the normal vectors are identical.

As observed in our numerical experiments so far, the normal vector field has
to be adjusted carefully in order to obtain regular surface patches. Note that
the LN surface patch also depends on the scaling of the given normals 1i;, not
only on their directions! We usually obtained good results for data taken from
an underlying convex surface. For this class of surfaces, there seems to be a
good chance to find an approximating LN surface spline by applying the above
construction to a triangulated set of sample points, simply by increasing the
number and the density of the data.
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Figure 2: Two triangular LN surface patches joined with G* con-
tinuity along the common boundary.

5 Concluding remarks

With the help of the ideas presented in this paper it is possible to construct
integral surface patches with rational offset surfaces. The possibilities offered by
the class of LN surfaces have been demonstrated by presenting a construction
of triangular patches from Hermite boundary data which is suitable for building
surface splines.

Forthcoming research will mainly focus on conditions that guarantee regular
solutions. Currently we are working on a surface spline scheme without singular
points at the vertices. Also, we will try to study the asymptotic behaviour (when
increasing the number and the density of the input data) of the surface splines.

A similar approach as described in this paper can be applied to integral Bézier
surface patches with a Pythagorean field of normal vectors. Again, the property of
the Pythagorean normals can be used as an additional linear constraint onto the
linear space of integral patches. As an advantage, the offsets of such patches would
immediately be rational, without requiring a reparameterization. The systems
of constraint equations (cf. (16)), however, would be far bigger, as the degree of
the polynomials (15) is higher. Moreover, the construction of a suitable field of
Pythagorean normal vectors is much more difficult, as the simplest representatives
(which correspond to quadratic triangular or bi-quadratic tensor—product patches
on the unit sphere) satisfy certain compatibility conditions of the boundaries, see
[5]. In order to avoid these conditions, one would need to use either quartic
triangular patches or tensor—product patches of degree (2,4). For these reasons
we have decided to study surfaces with a linear field of normal vectors instead.
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