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Abstract

We discuss the problem of interpolating C1 Hermite data on the sphere (two points
with associated first derivative vectors) by spherical rational curves. With the help
of the generalized stereographic projection (Dietz et al., 1993), we construct a two–
parameter family of spherical quartics solving this problem. We study the shape
of these solutions and derive criteria which guarantee solutions without cusps or
self–intersections.
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1 Introduction

Spherical curves, and rational spherical curves in particular, have various ap-
plications. These include techniques for motion design in robot kinematics
and computer animation (Jüttler and Wagner, 2002; Röschel, 1998), and al-
gorithms for the construction of Pythagorean hodograph curves (Farouki et
al., 2002; Farouki, 2002). Several methods for generating spherical curves are
available. Spherical generalizations of de Casteljau’s algorithm, which are used
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in Computer Graphics (e.g. Pletinckx, 1989; Shoemake, 1985), lead to non–
rational spline curves with rather complicated coordinate functions. This en-
tails nonlinear interpolation conditions, difficulties with the construction of
C2 curves and the lack of a subdivision property (Nielson and Heiland, 1992).
Other approaches are based on mappings into the plane (Jupp and Kent, 1987)
arc splines (Hoschek and Seemann, 1992), biarcs (Wang and Joe, 1993, and
1997), blending methods (Kim and Nam, 1995), spherical generalizations of
the cumulative form of B-spline–curves (Kim et al., 1995), spherical Lagrange
interpolation (Gfrerrer, 1999) and generalized corner cutting (Noakes, 1998).

Rational curves on quadric surfaces (e.g., on the sphere) can be seen as so-
lutions to certain Diophantine equations in the ring of polynomials. In the
three–dimensional case, the equation of the unit sphere S

2 (which is a repre-
sentative of the class of oval quadrics) takes the form w2 = x2 + y2 + z2. All
irreducible solutions can be generated with the help of a classical representa-
tion formula from number theory, which was first noted by V.A. Lebesgue in
1868 (Dickson, 1952).

This formula has been used to define a mapping from real projective 3–space
onto the unit sphere, δ : P 3(R) → S

2, which has been called the generalized
stereographic projection (Dietz et al., 1993), since it comprises the standard
stereographic projection as a special case. As a major advantage, this mapping
avoids the dependency on the choice of the center of projection, which is always
present for the standard stereographic projection. Due to its algebraic origin,
this mapping can be used to generate any rational curve of degree 2n on the
sphere as the image of a curve of degree n.

This mapping can be discussed from a geometrical point of view, too. It
can be shown to identify the points of the unit sphere with a special two–
parameter system of lines, called an elliptic linear congruence. See the text-
book by Pottmann and Wallner (2001), where the generalized stereographic
projection appears as the famous “Hopf mapping”, for more information on
this point of view. Also, the mapping is closely related to quaternion calculus
and the Eulerian representation of special orthogonal matrices (Jüttler and
Wagner, 2002). Another possible framework, based on Clifford algebras, is
described by Choi et al. (2002).

We use the generalized stereographic projection to generate and to analyze
the solutions to the C1 Hermite interpolation problem with spherical rational
curves on the sphere S

2 in three–dimensional space. Given two points with as-
sociated first derivatives on a sphere, we interpolate this data with a spherical
rational quartic.

Recently, rational quartics on the hypersphere S
3 in four–dimensional space

have been used by Wang and Qin (2000) for solving the C1 Hermite interpo-
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lation problem. The data (two points with associated first derivative vector)
spans a hyperplane, and it is natural to study those solutions which are con-
tained in this hyperplane, i.e., three–dimensional solutions (although other
solutions exist too). In this paper we restrict ourselves to these solutions,
leading to a two–parameter family of solutions.

Using the generalized stereographic projection, each solution can be identi-
fied with a point in a certain parameter plane. We discuss the shape of the
solutions, which is characterized by the presence of cusps or double points.
This results in a so–called characterization diagram: the parameter plane is
subdivided in different regions which correspond to solutions with the same
shape.

2 Preliminaries

Throughout this paper we use homogeneous coordinates p = (p0, p1, p2, p3) 6=
(0, 0, 0, 0) to describe points in 3–space. If two vectors p, p′ of homogeneous
coordinates are linearly dependent, i.e. p = ρp′ for some ρ 6= 0, then they
correspond to the same point in 3–space.

If p0 6= 0 holds , then the associated Cartesian coordinates of the point p are
P = (p1/p0, p2/p0, p3/p0). Otherwise, if p0 = 0, the coordinates p correspond
to a so–called ideal point; it can be used to represent the intersection point
of all lines with a direction parallel to the vector (p1, p2, p3). Capital resp.
lowercase letters are used to denote Cartesian resp. homogeneous coordinates.

With the help of homogeneous coordinates, the equation of the unit sphere in
3–space can be rewritten as

x2

0
= x2

1
+ x2

2
+ x2

3
. (1)

Any quadruple of polynomials x0(t), . . . , x3(t) which satisfies this equation
defines a spherical rational curve x(t) = (x0(t), . . . , x3(t)).

In order to generate rational curves and surfaces on the unit sphere, the gen-
eralized stereographic projection has been introduced by Dietz et al. (1993).
For the convenience of the reader, we summarize the main properties.

The generalized stereographic projection maps a point p in three–dimensional
space to the point

δ(p) = (p2

0
+p2

1
+p2

2
+p2

3
, 2p0p1−2p2p3, 2p1p3+2p0p2, p2

1
+p2

2
−p2

0
−p2

3
) (2)
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on the unit sphere. Indeed, the point x = δ(p) satisfies (1).

By restricting the generalized stereographic projection to the xy–plane, (i.e.,
by choosing points with p3 = 0), one gets the standard stereographic projec-
tion, with the center at the north pole n = (1, 0, 0, 1) of the sphere.

This mapping is based on a representation formula for irreducible Pythagorean
quadruples in number theory which is attributed to V.A. Lebesgue (Dickson,
1952). Due to its algebraic properties, any rational spherical curve of degree 2n
can be constructed by applying δ to a rational space curve of degree n.

For instance, any spherical curve of degree two, i.e., any circle, can be ob-
tained as the image of a line in P 3(R). Applying the standard stereographic
projection to lines in the xy-plane, by contrast, gives only those circles which
pass through the center of projection. Similarly, any spherical rational quartic
can be generated by applying the generalized stereographic projection to a
rational curve of degree 2, i.e., to a conic. This observation will be exploited
in this paper.

The generalized stereographic projection is not a one–to–one mapping, as
points in 3–space are mapped to a surface. Any point on the sphere corresponds
to a line in 3–space. Any of these lines is called a projecting line.

In contrast to the more familiar case of a perspective projection, the projecting
lines do not pass through a single center, but form a more sophisticated system
of lines instead. For any point p = (p0, p1, p2, p3), let p⊥ = (−p3, p2,−p1, p0).
The line spanned by p and p> is then a projecting line; all its points are
mapped to the same point on the unit sphere. A short calculation indeed
confirms that, for arbitrary coefficients λ, µ,

δ(λp + µp⊥) = (λ2 + µ2) δ(p) (3)

Since we are using homogeneous coordinates, all points on the line spanned
by p and p> are mapped to the same point.

The system of all lines of the form λp+µp⊥ has a space–filling property: any
point in three–space lies on exactly one line. These lines can be shown to form
a so–called linear congruence: they all pass through two fixed focal lines, which
are, however, conjugate–complex in our situation. For all points on the two fo-
cal lines, the four components of (2) vanish simultaneously. Consequently, the
focal lines consist of all base points of the generalized stereographic projection.
See Dietz et al. (1993) or Pottmann and Wallner (2001) for more details.
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3 Hermite interpolation with spherical quartics

We study the problem of C1 Hermite interpolation with spherical rational
curves. Given two points Q

0
and Q

1
on the sphere with associated first deriva-

tives (tangent vectors) ~D0 and ~D1, we want to find a spherical rational curve
X(t) with domain t ∈ [0, 1] such that

X(0) = Q
0
,

d

dt
X(t)

∣
∣
∣
∣
∣
t=0

= ~D0, X(1) = Q
1
, and

d

dt
X(t)

∣
∣
∣
∣
∣
t=1

= ~D1. (4)

This problem can be solved by rational curves of degree 4, the so–called ratio-
nal spherical quartics. In homogeneous coordinates x = (x0, x1, x2, x3), these
curves are described by four quartic polynomials xi = xi(t). This corresponds
to rational Cartesian coordinate functions X = (x1/x0, x2/x0, x3/x0).

Note that the given data includes not only the tangents, but also the length
of the boundary derivatives, i.e., the parametric speed at t = 0 and t = 1!
Consequently, the solution to this problem can easily be used to construct
C1 spline curves. The parametric speed may be important for applications
in computer animation or kinematics, where spherical curves correspond to
rotations. Here, the interpolation of a given (angular) velocity distribution
can sometimes be desirable.

In order to simplify the analysis of the solutions, we assume that the C1

boundary data is given in a certain standard form, as follows. First, the points
Q

0
and Q

1
are assumed to be in lower half of the xz-plane. Second, their

bisector in the xz–plane is assumed to be the z–axis. Then, using the well-
known parameterization of a circle by q = tan φ

2
, the boundary points can

easily be represented as

Q
0

= (
−2q

q2 + 1
, 0,

q2 − 1

q2 + 1
), and Q

1
= (

2q

q2 + 1
, 0,

q2 − 1

q2 + 1
) (5)

with a constant q ∈ [0, 1]. The given tangent vectors ~D0 at Q0 and ~D1 at Q1

can be represented as

~D0 =
1

q2 + 1
(T1(q

2 − 1), T2, 2T1q) (6)

and

~D1 =
1

q2 + 1
(S1(q

2 − 1), S2,−2S1q), (7)
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where T1, T2, and S1, S2 are certain constants.

We assume that neither of the given tangent vectors vanishes and that the two
endpoints are different. Hence, (T1, T2) 6= (0, 0), (S1, S2) 6= (0, 0), and q 6= 0.

We call the given data circular, if it can be matched by a circular arc 1 . This
the the case if and only if the two points Q

0
, Q

1
and the tangent vectors ~D0,

~D1 are coplanar.

4 Canonical form of the solutions

We give an explicit representation of the family of solutions, depending on two
free parameters X and Y . The solutions matching a given set of C1 Hermite
boundary data has two degrees of freedom; consequently, they can be identified
with a point in the XY plane.

4.1 Preimage curve

In order to construct an interpolating spherical quartic curve, we apply the
generalized stereographic projection to a quadratic rational preimage curve,
i.e., to an arc of a conic section (conic for short). The preimage curve is given
as a rational curve of degree 2 in Bézier form, with the parameterization

p(t) = (1 − t)2b0 + 2t(1 − t)b1 + t2b2, t ∈ [0, 1]. (8)

Due to the properties of the generalized stereographic projection, any curve
of the pencil λp(t) + µp(t)⊥ (λ, µ ∈ R) is mapped to the same quartic curve.
Thus, we may – without loss of generality – pick one of these preimages. We
do so by constraining the weight and the location of the inner control point; its
weight is normalized to be 1, and its location is constrained to the xy plane 2 ,

b1 = (1, X, Y, 0). (9)

1 Here we consider general quartic representations of the circular arc.
2 The pencil of curves has two degrees of freedom, which are used to satisfy the two
constraints. The weight normalization excludes inner control points at infinity. This
special case can be studied by considering the limit (X,Y ) = (γX0, γY0), where
γ → ∞.
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b1

λ  ,µ0 0

λ  ,µ1 1

b b0
2

X,Y

Fig. 1. Choosing the preimage control points of the spherical quartic.

The two boundary control points of the preimage curve are chosen as

b0 = λ0 (1,−q, 0, 0) + µ0 (0, 0, q, 1), and

b2 = λ1 (1, q, 0, 0) + µ1 (0, 0,−q, 1)
(10)

These are arbitrary points on the preimage lines of the two given boundary
points Q0 and Q1, with arbitrary weights. Consequently, the image curve
δ(p) matches these points. The position and the weights of the control points
depend on the six parameters X, Y , λ0, λ1, µ0 and µ1.

4.2 Image curve

We apply the generalized stereographic projection (2) to the quadratic curve
(8). This results in the quartic Bézier curve x(t) = δ(p(t)),

x(t) = (1 − t)4c0 + 4(1 − t)3tc1 + 6(1 − t)2t2c2 + 4(1 − t)t3c3 + t3c4, (11)

with the control points

c0 = (λ2

0
+ µ2

0
) (q2 + 1, −2q, 0, q2 − 1)

︸ ︷︷ ︸

=q0

, (12)

c1 = (−λ0qX + µ0qY + λ0, λ0X − µ0Y − λ0q,

µ0X + λ0Y + µ0q, −λ0qX + µ0qY − λ0),
(13)

c2 = 1

3
(2X2 + 2Y 2 + (λ0λ1 + µ0µ1)(1 − q2) + 2, 4X, 4Y + 2µ0λ1q

−2λ0µ1q, 2X2 + 2Y 2 − (λ0λ1 + µ0µ1)(1 + q2) − 2),
(14)
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c3 = (λ1qX − µ1qY + λ1, λ1X − µ1Y + λ1q,

µ1X + λ1Y − µ1q, λ1qX − µ1qY − λ1)
(15)

and

c4 = (λ2

1
+ µ2

1
) (q2 + 1, 2q, 0, q2 − 1)

︸ ︷︷ ︸

=q1

. (16)

As we chose the boundary control points b0, b2 of the preimage curve on the
projecting lines (10), the boundary control points c0, c4 of the quartic curve
match the given points Q0, Q1.

In the next step, we may choose the parameters λ0, λ1, µ0, and µ1 in order
to match the given derivative data, cf. (6) and (7). After some (computer)
algebra one arrives at

λ0 = 4
T2Y − T1(q

2 + 1)(X + q)

T 2
1 (q2 + 1)2 + T 2

2

, µ0 = 4
T2(X + q) + T1Y (q2 + 1)

T 2
1 (q2 + 1)2 + T 2

2

(17)

and

λ1 = 4
S1(q

2 + 1)(X − q) − S2Y

S2
1(q

2 + 1)2 + S2
2

, µ1 = 4
S2(q − X) − S1Y (q2 + 1)

S2
1(q

2 + 1)2 + S2
2

.(18)

The numerators of these expressions vanish if and only if the Hermite data is
singular, i.e. ~D0 = ~0 or ~D1 = ~0. Summarizing, we have the following result.

Theorem 1 The spherical rational quartic curves which match the C1 Her-
mite boundary data (4) have the form (11) with the control points (12)–(16)
and the parameters λi and µi as in (17), (18).

Thus, after taking the Hermite data into account, we obtain a two–parameter
family of solutions. The two free parameters are the two coordinates (X, Y ) of
the inner control point b1 of the preimage curve. If the data is non–circular,
then different parameters (X, Y ) also produce different solutions. It can be
shown that any two quadratic preimages of a spherical quartic belong to the
same pencil λp(t)+µp(t)⊥ of quadratic curves, and each such pencil contains
only one curve with an inner control point of the form (1, X, Y, 0). Conse-
quently, we have (for non–circular data) a one–to–one correspondence between
the solutions of the Hermite interpolation problem and the points (X, Y ) ∈ R

2.
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5 Shape analysis

Based on the previous theorem, we analyze the shape of the interpolating
curves. In particular, we will characterize solutions with double points and
cusps.

5.1 Global classification

We begin our analysis by considering the spherical quartic curve (11) with
the extended parameter domain t ∈ R ∪ {∞}. Its shape can be classified as
follows.

• Case 1 (degenerate). The preimage curve (8) is contained in a projecting
line (3). Consequently, the spherical quartic curve degenerates into a single

point. This curve matches the degenerate Hermite data Q
0

= Q
1

and ~D0 =
~D1 = ~0, i.e., q = T1 = T2 = S1 = S2 = 0.

• Case 2 (singular). The preimage curve (8) is contained in a line, which is
not a projecting line. Consequently, the spherical quartic curve degenerates
into a circle (if the preimage curve traces the entire line) or into a circular
arc (if the preimage curve traces a line segment only, which is then covered
twice). This case may occur only if the given Hermite boundary data is
coplanar, as they cannot be matched by a single circular arc otherwise.

• Case 3 (general). The preimage curve (8) is a non–degenerate conic.
Clearly, the control points b0, b1 and b2 span a plane π, and the conic
is contained in this plane. Due to the properties of the generalized stere-
ographic projection (see Dietz et al., 1993), the plane π contains exactly
one projecting line 3 `π. Depending on the relative position of this line with
respect to the preimage conic, we arrive at three different sub–cases.
· Case 3.1 (hyperbolic). The line `π intersects the conic in two real and

distinct points. Consequently, the spherical quartic curve has a single dou-
ble point with two real parameter values.

· Case 3.2 (elliptic). The line `π intersects the conic in two conjugate–
complex and distinct points.

Case 3.2.1 (regular). The two intersections do not belong to the
two focal lines. The spherical quartic curve does not have a double
point. More precisely, the curve has an isolated double point, but
with two conjugate–complex parameter values.
Case 3.2.2 (singular). The two intersections belong to the two focal
lines. Consequently, the spherical quartic curve degenerates into a
circle, since the components of δ(p(t)) share a quadratic factor. Its

3 Recall that the projecting lines pass through two conjugate–complex focal lines.
The line `π is spanned by the two intersections of the plane π with the focal lines.
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roots are the conjugate–complex parameter values of the intersections
with `π.

Similar to Case 2, this case may occur only if the given Hermite
boundary data is coplanar, as they cannot be matched by a single
circular arc otherwise.

· Case 3.3 (parabolic). The line `π is tangent to the conic. The tangent
point is necessarily real, thus not on either of the two focal lines. We
obtain a spherical quartic curve with a cusp.

Some examples for Case 3 are shown in Figure 2.

preimage curve projecting line

δ

preimage curve projecting line

δ

preimage curve projecting line

δ

Fig. 2. Hyperbolic, elliptic (regular) and parabolic case.

Clearly, as we want to analyze the solutions to the Hermite interpolation
problem (4), we are mostly interested in the properties of the curve segment
t ∈ [0, 1]. This segment may have a double point or a cusp. Among the two–
parameter family of solutions (see Theorem 1), there are three transition cases
between the different types of solutions. These are the curves with a cusp, and
curves with double points at the boundaries (at t = 0 or at t = 1).
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5.2 Cusps

Assume that the quartic curve is not a circular arc. The image of the quadratic
rational Bézier curve p(t) (see (8)) under the generalized stereographic pro-
jection δ has a cusp for some t = t0 if the tangent at p(t0) is a projecting
line.

Recall that the tangent of a curve p(t) is spanned by the point p(t) and by
the associated derivative point ṗ(t). Let

gij(t) = pi(t)ṗj(t) − pj(t)ṗi(t), i, j = 0, . . . , 3, (19)

be the Plücker coordinates 4 of the tangent. As observed by Dietz et al. (1993),
the projecting lines of the generalized stereographic projection are uniquely
characterized by the two linear equations g01 − g23 = 0 and g02 − g31 = 0 of
the Plücker coordinates. Consequently, if the two polynomials

G(t) = g01(t) − g23(t) and H(t) = g02(t) − g31(t) (20)

have the simultaneous root t = t0, then either the tangent of the preimage
curve at p(t0) is a projecting line, or the preimage curve is singular at t = t0,
i.e., p(t0) and the derivative point p(t0) are linearly dependent. The second
case was excluded by assuming a non–circular spherical quartic. The first case
corresponds to a cusp of the spherical quartic curve x(t).

Both G(t) and H(t) are polynomials of degree 2 in t and of degree 2 in X, Y .
Using computer algebra tools we compute the resultant of G(t) and H(t) with
respect to the parameter t,

c(X, Y ) =
(T 2

1
(q2+1)2+T 2

2
)2(S2

1
(q2+1)2+S2

2
)2

4096
Res(G(t), H(t), {t}). (21)

The Maple code of these computations is given in the appendix. The resultant
is a polynomial of degree 8 in X, Y .

The resultant vanishes if any only if both polynomials have a common root
t = t0. Consequently, the quartic curve x(t) has a cusp for some t = t0 if
and only if the resultant vanishes. The set of all points in the XY –plane with

4 Taking the antisymmetry into account, the gij form a system of 6 homogeneous
coordinates which uniquely characterize the lines in three–dimensional space. A
more detailed introduction to line geometry is beyond the scope of the present
paper. The interested reader should consult the textbook of Pottmann and Wallner
(2001).
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c(X, Y ) = 0 forms an algebraic curve C in the plane; this curve will be referred
to as the cusp curve. The cusp curve is symmetric with respect to the Y –axis.
It intersects the X–axis in the points (±q, 0), where each of these points has
multiplicity 4.

Proposition 2 Assume that the Hermite data is non–circular. The cusp curve
C factors into four circles. All these circles pass through the two points (±q, 0),
and they are symmetric with respect to the Y axis.

Proof. The two points (±q, 0) and the circular points at infinity (with homo-
geneous coordinates (0, 1,±i), where i is the imaginary unit) are 4–fold points
of the cusp curve. This can be shown by substituting these points into the
equation of the cusp curve and its derivatives. Furthermore, it is straightfor-
ward to verify that none of the six lines determined by the four 4–fold points
is a component of the cusp curve, provided that the data is non-circular.

Now we claim that, other than the four 4–fold points, any point r of the cusp
curve is not on any of the six lines determined by the four 4–fold points. For
otherwise, if such a line passes through r, then it has nine intersections with
the cusp curve. It follows, by Bezout’s theorem, that the line is a component
of the cusp curve, which is a contradiction.

Therefore, other than the four 4–fold points, any point r of the cusp curve is
on a unique proper conic Cr that passes through the four 4–fold points, since
a proper conic is uniquely determined by five points with no three of the five
points being collinear. Since this proper (hence, also irreducible) conic Cr has
4 + 1 > 16 intersections with the cusp curve, by Bezout’s theorem, Cr is a
component of the cusp curve. This shows that the cusp curve is the union of
a collection of proper conics. Since the cusp curve is of degree 8, we conclude
that it consists of four proper conics, which are necessarily circles since they
all passes through the circular points. This completes the proof. �

The points (±q, 0) play a special role, since they correspond to the given data.
If (X, Y ) = (−q, 0) (resp. (X, Y ) = (q, 0)), then the control points b0 (resp.
b2) and b1 of the preimage curve are both mapped to Q

0
(resp. Q

1
).

The four circles of this proposition will be called the cusp circles. After ana-
lyzing several examples we were led to formulate the following conjecture.

Conjecture 3 Two of the four cusp circles are real, while the other two are
conjugate–complex.

Despite several efforts we were not able to prove (or disprove) this conjecture,
as computer algebra tools which are available to us failed to find a symbolic
factorization of the polynomial c(X, Y ). They succeeded, however, in all ex-
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amples, where we randomly chose rational numbers as input data S1, S2, T1, T2

and q. Apparently, the difficulties are caused by the fact that factoring the
equation involves the symbolic solution of a univariate equation of degree 4.

An example is shown in Figure 3 (see below for more comments). The real
part of the cusp curve leads to the red circles. Both circles are symmetric with
respect to the Y –axis and intersect in the two points (±q, 0).

(14)

(15)

(17)

(16)

(2) (4)

(5,S)

(6)

(7)

X

Y

(1)

(3)

(10) (12) (13)(9)(8) (11)

1

1

Fig. 3. Characterization diagram with cusp curve (red) and double
point curves (green and blue). The points (1)..(17) and (S) corre-
spond to examples of interpolating curves, see Figures 4 and 5.

5.3 Boundary double points

Assume that the quartic curve is not a circular arc. Then, the spherical quartic
curve x(t) has a double point or a cusp at t = 0, if and only if there is
a projecting line (3) intersecting p(0) = b0 and another point p(t0) of the
preimage curve. Equivalently, the projecting line through b0 and the control
points b1, b2 have to be coplanar. This leads to the following double point
condition.

Theorem 4 Assume that the Hermite data is non–circular. The spherical
quartic curve has a double point at t = 0 (resp. at t = 1), if and only if

d0(X, Y ) = 2S1q
3Y + 2 S1qY − S2q

2 + S2X
2 + S2Y

2 = 0

(resp. d1(X, Y ) = −2 T1q
3Y − 2 T1qY − T2q

2 + T2X
2 + T2Y

2 = 0).
(22)
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The polynomials d0(X, Y ) = 0 and d1(X, Y ) = 0 define two circles in the XY –
plane. Both circles are symmetric with respect to the Y –axis and intersect in
the two points (±q, 0).

Proof. Non–circular data cannot be interpolated by a circular arc. Conse-
quently, the preimage curve is not a straight line. Thus, if the projecting line
through b0 is coplanar with b1 and b2, then it either intersects the curve in
another point, leading to a double point, or it is tangent to it at b0, leading
to a cusp.

The coplanarity is guaranteed by d0 = 0, as this polynomial is the determinant
of the matrix with rows (1,−q, 0, 0), (0, 0, q, 1), b1 and b2. The case t = 1
follows similarly.

The two conics d0(X, Y ) = 0 and d1(X, Y ) = 0 are circles, since they pass
through the circular points at infinity. In addition, they can be shown to pass
through the two points (±q, 0). �

The two circles will be referred to as the boundary double point circles. Clearly,
they intersect the cusp curve only in the two points (±q, 0).

Along with the cusp curve, the double point circles can be used to define a
characterization diagram, which governs the shape of the interpolating quartic
curve. An example is shown in Figure 3. The boundary point circles are shown
in green and blue.

5.4 An example

We apply the theoretical results to the example

q =
1

2
, S1 = −

3

2
, S2 = −

7

2
, T1 = −2, T2 =

3

2
. (23)

The double point circles (green and blue) and the cusp curve (red) are shown
in Figure 3. We have generated 18 different examples of interpolating curves.
They are shown in Figures 4 and 5.

The first examples (1..17) correspond to the intersections of the cusp curve
and the double point circles with the Y – axis (even numbers), and to points
in between them (odd numbers). The last example (S) has been constructed
with the help of (non–generalized) stereographic projection, where the center
has been fixed at the ‘north pole’ of the unit sphere. For all 18 examples, the
corresponding (X, Y ) points have been marked in Figure 3.
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(1) X = 0, Y = 10.0 (2) X = 0, Y = 5.85 (3) X = 0, Y = 3.0

(4) X = 0, Y = 0.62 (5) X = 0, Y = 0.5 (6) X = 0, Y = 0.3

(7) X = 0, Y = 0.23 (8) X = 0, Y = 0.138 (9) X = 0, Y = 0.08

Fig. 4. Examples – interpolating curves with various shapes, (1-9)

In all examples, the curve segment obtained for t ∈ [0, 1] is shown in black, and
its end points are marked. The exterior part of the curve is represented by the
two blue curve segments with the parameter domains [−100, 0] and [1, 101].
In order to make the curve segments on the back side visible, the sphere is
shown as a shaded ‘stripe model’.

The type of each curve is represented by the “icon” on top of each plot: the
black segment corresponds to t ∈ [0, 1], and the blue curve represents the
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(10) X = 0, Y = −0.04 (11) X = 0, Y = −0.2 (12) X = 0, Y = −0.4

(13) X = 0, Y = −0.6 (14) X = 0, Y = −0.84 (15) X = 0, Y = −1.4

(16) X = 0, Y = −1.8 (17) X = 0, Y = −2.0 (S) X = 0.25, Y = 0.45

Fig. 5. Examples – interpolating curves with various shapes (10-17,S)

exterior part.

5.5 Characterization diagram

The cusp curve and the boundary double point circles define a characterization
diagram, for spherical quartic curvessee Figure 3. Each point in the diagram
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corresponds to a solution of the Hermite interpolation diagram, and vice versa.
Within each cell of the diagram, the solutions have the same shape.

By crossing a red curve, one will “destroy” or “create” a double point. By
crossing a blue or green curve, one of the two parameter values of a double
point will cross one of the segment boundaries.

The different shapes are represented by the “icons” in Figure 3. Again, the
black segment corresponds to t ∈ [0, 1], and the blue curve represents the exte-
rior part. The boundaries are marked by two points. The limit shapes (curves
with cusps or boundary double points) are associated with curves in the dia-
gram (cusp curve or boundary point circles). The other shapes correspond to
regions (bounded by the various circles) of the diagram. There are 8 different
shapes, corresponding to the cells and the boundaries of the characterization
diagram.

Finally, it should be noted that the case of circular data (coplanar points
and derivatives) requires a separate, more detailed analysis. Here, the dou-
ble point circles and the cusp curve degenerate in various ways into circles
with higher multiplicities, depending on whether the data admits a quadratic
parameterization or not.

6 Concluding remarks

We discussed the problem of interpolating C1 Hermite data on the sphere (two
points with associated first derivative vectors) by rational spherical quartics.
Using the generalized stereographic projection (Dietz et al., 1993), we obtained
a two–parameter family of rational quartics which solve this problem. The
shape of the solutions can be analyzed with the help of a characterization
diagram, which describes the relation between the shape of the solutions and
the two free parameters.

Our results can be used to develop a practical scheme for spherical Hermite
interpolation, which would generate quartic spherical C1 Hermite splines.
Clearly, for each segment of the spline, the remaining two degrees of free-
dom have to be dealt with appropriately. This could be based on on suitable
heuristic techniques, or using numerical methods for minimizing a suitable
fairness measure. Both approaches should take the shape of the solution into
account.

We conclude this paper by pointing to two possible applications of quartic
spherical C1 Hermite splines. First, they can be useful for designing quintic
spatial Pythagorean hodograph curves, since the hodograph of these curves
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corresponds to a spherical rational curve (see Farouki et al., 2002). Second,
if they are used for generating rational motions (rigid body motions with
rational point trajectories, see Jüttler and Wagner, 2002), they provide an
interpolation scheme which has the property of “invariance with respect to
parameterization”, as it was called by Röschel (1998). So far, only the scheme
of Gfrerrer (1999) provides this property.
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A Appendix

For the convenience of the reader, we provide a listing of the Maple code used
for generating the criteria for cusps and double points.

> restart: with(linalg): with(plots):
> # preimage curve; boundary control points
> b0:=evalm(lambda0*[1,-q,0,0]+mu0*[0,0,q,1]);
> b2:=evalm(lambda1*[1,q,0,0]+mu1*[0,0,-q,1]);
> # components X and Y of b1 serve as free parameters
> b1:=[1,X,Y,0];
> # preimage curve; s=(1-t)
> p:=evalm(s^2*b0+2*s*t*b1+t^2*b2);
> # derivative
> pd:=evalm(2*(s*(b1-b0)+t*(b2-b1)));
> # generalized stereographic projection
> gsp:=proc(d)
> RETURN([ d[1]^2+d[2]^2+d[3]^2+d[4]^2, 2*d[1]*d[2]-2*d[3]*d[4],
> 2*d[2]*d[4]+2*d[1]*d[3], d[2]^2+d[3]^2-d[1]^2-d[4]^2 ]);
> end;
> # image curve
> x:=subs(s=(1-t), gsp(p)):
> # control points of image curve
> for i from 0 to 4 do
> map(factor,evalm(map(coeff,map(coeff,gsp(p),s,i),t,4-i)
/binomial(4,i)));

> od:
> # image curve in Cartesian coordinates
> xc:=[x[2]/x[1],x[3]/x[1],x[4]/x[1]]:
> # derivative
> xcd:=map(diff,xc,t):
> # derivatives at segment boundaries
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> xcd0:=map(factor,subs(t=0,eval(xcd)));
> xcd1:=map(factor,subs(t=1,eval(xcd)));
> # C1 boundary conditions: interpolation of 1st derivatives
> res0:=subs(lambda0=lambda0s,mu0=mu0s,solve({xcd0[1]=T1*(q^2-1)

/(1+q^2), xcd0[2]=T2/(1+q^2)}, {lambda0,mu0}));
> res1:=subs(lambda1=lambda1s,mu1=mu1s,solve({xcd1[1]=S1*(q^2-1)

/(q^2+1), xcd1[2]=S2/(q^2+1)}, {lambda1, mu1}));
> assign(res0); assign(res1);
> ressubs:= lambda0=lambda0s, mu0=mu0s, lambda1=lambda1s, mu1=mu1s:
> # substitute results into preimage control points
> b0s:=subs(ressubs,eval(b0)): b2s:=subs(ressubs,eval(b2)):
> auxfac:=(T1^2+q^4*T1^2+T2^2+2*q^2*T1^2)

*(S1^2+2*q^2*S1^2+q^4*S1^2+S2^2);
> # substitute results into preimage curve
> pint:=map(factor,subs(ressubs, s=(1-t),eval(p))):
> # its derivative points
> pintd:=map(factor,subs(ressubs, s=(1-t),eval(pd))):
> # cusp condition
> g01:=factor(auxfac*(pint[1]*pintd[2]-pint[2]*pintd[1])):
> g02:=factor(auxfac*(pint[1]*pintd[3]-pint[3]*pintd[1])):
> g23:=factor(auxfac*(pint[3]*pintd[4]-pint[4]*pintd[3])):
> g31:=factor(auxfac*(pint[4]*pintd[2]-pint[2]*pintd[4])):
> cc:=factor(resultant(g01-g23,g02-g31, t)/(8192*auxfac^2)):
> factor(subs(Y=0,cc));
> # condition for a double point at t=0
> db0:=numer(factor(1/q/8*det(subs(ressubs,matrix(4,4,[1,-q,0,0,0,0,

q,1,1,X,Y,0,b2[1],b2[2],b2[3],b2[4]])))));
> # condition for a double point at t=1
> db1:=numer(factor(1/q/8*det(subs(ressubs, mu1=mu1s,matrix(4,4,[1,q,

0,0,0,0,-q,1,1,X,Y,0,b0[1],b0[2],b0[3],b0[4]])))));
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