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Abstract. Surfaces in line space are called line congruences. We con-
sider several special line congruences forming a fibration of the three—
dimensional space. These line congruences correspond to certain special
algebraic surfaces. Using rational mappings associated with the line con-
gruences, it is possible to generate rational curves and surfaces on them.
This approach is demonstrated for quadric surfaces, cubic ruled surfaces,
and for Veronese surfaces and their images in three-dimensional space
(quadratic triangular Bézier surfaces).

1 Introduction

Line Geometry — the geometry of lines in three-dimensional space — is a classical
part of geometry, whose origins can be traced back to works of Pliicker in the 19th
century. Differential line geometry studies line manifolds using the techniques
provided by differential geometry [11, 12]. Recently, computational line geometry
[17] has been demonstrated to be useful for various branches of applied geometry,
ranging from robot kinematics to computer aided geometric design.

Two—dimensional manifolds of lines are called line congruences. A simple
example is the system of normals of a surface. Via the Klein mapping, which
identifies each line with a point on a hyperquadric in a five—dimensional real
projective space, line congruences correspond to surfaces. We are mainly inter-
ested in special line congruences, which are equipped with an associated rational
mapping.

Linear congruences are the simplest class of line congruences. They have
been used for parameterizing the various types of quadric surfaces [8, 6, 16]. The
parameterization is based on the quadratic mapping which is associated with
them.

After summarizing this approach from the viewpoint of line geometry, we
generalize it to other classes of algebraic surfaces. By using other, more sophis-
ticated line congruences, we derive similar results for the various types of cubic
ruled surfaces, and for Veronese surfaces.



The paper is organized as follows. First we summarize some fundamental
concepts from line geometry. Section 3 discusses line models of quadric surfaces,
which are related to the generalized stereographic projection. Section 4 is de-
voted to cubic ruled surfaces, which are shown to be closely connected with a
certain class of line congruences. Similarly, section 5 deals with Veronese surfaces.
Finally, we conclude this paper.

2 Line geometry

In this section we summarize the fundamentals of the geometry of lines in three—
dimensional space. Due to space limitations, this section can give only an outline
of this fascinating branch of geometry. For further information, the reader should
consult suitable textbooks, such as [11,12,17].

2.1 Homogeneous coordinates

Throughout this paper, points in three—dimensional space will be described by
homogeneous coordinate vectors

P= (pO;pI;p2;p3)T € ]R3 \ {(0703070)T} (1)

Any two linearly dependent vectors correspond to the same point. The associated
Cartesian vectors of points satisfying pg # 0 are
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Points with pg = 0 are called ideal points or points at infinity; they can be

identified with the co? equivalence classes of parallel lines in three-dimensional
space.

2.2 Pliicker’s line coordinates

The line £ spanned by two different points p, q (i.e., with linearly independent
homogeneous coordinate vectors) consists of all points

x=Xp+pua, (Ap) € R\ {(0,0)}. 3)

Consider the 2 x 2 determinants l;; = p; ¢; — p;j ¢;- They produce essentially six
different numbers

L =pAdq= (lo1,lo2,lo3, 123,131, 112) - (4)

The components of the vector L € R%, which are called the Pliicker coordinates,
are homogeneous coordinates of the line £. They do not depend on the choice of



the points p and q. Indeed, the two points p’ = Aop + poq and @' = \ip + 1 q
lead to the modified Pliicker coordinates L' which are linearly dependent on L,

Ao A
L'=p'Aq =det| "° 1)L. 5
P Aq e(ﬂo M1 ()

The Pliicker coordinates {;; of a line satisfy the Plicker’s identity
loilas +lo2l31 + lo3liz = 0. (6)

If p, q and r, s are two pairs of points spanning two lines L and M, respectively,
then the determinant of the 4 x 4 matrix [p,q,r,s] can be expanded to

(L, M) = lpimas + loama1 + logmaz + mo1lag + moals: + mosliz =0.  (7)

Consequently, the two lines intersect if and only if (L, M) = 0. Pliicker’s identity
is obtained the special case L = M, i.e., %(L, L) =0.

Remark 1. If q = (0,v1,v2, v3) is chosen as an ideal point, and p = (1’21’22713)
is the vector of Cartesian coordinates, homogenized by adding a leading 1, then
the Pliicker coordinates

L= ( U1,V2,03 3(”17“27“3) X (Qlag27Q3))T- (8)
N—— ~ ~ -
direction vector momentum vector

are the so—called momentum vector (which is perpendicular to the plane spanned
by the line, and whose length is equal to the distance from the origin) and the
direction vector of the line, see Figure 1. Pliicker’s identity (6) is satisfied, since
direction and momentum vector are mutually perpendicular.

Fig. 1. Momentum vector m and direction vector d of a line £



Remark 2. An alternative notation is based on three-dimensional vectors from
R? + eR?, where the so—called “dual unit” e satisfies €2 = 0. Dual unit vectors
u = d + em satisfying (u,u) = d? + ed, m correspond to the line with direction
vector d and the momentum vector m. Two lines intersect if and only if the dual
part of the inner product vanishes. The inner product can be used to determine
both the distance and the angle between two lines. This notation is frequently
used in space kinematics [2], where it leads to the dual quaternion representation
of rigid body motions.

2.3 Klein’s mapping

Using Pliicker coordinates, any line £ in three-dimensional space is identified
with the point

L = (o1, lo2, o3, 123, 131, 112) )
in the five-dimensional real projective space P°(R), which is contained in the
hyperquadric M given by Pliicker’s identity (6). On the other hand, any such
point L corresponds to a unique line. Points with lg; = lg2 = lg3 = 0 correspond
to points at infinity. This bijective mapping

line £ C P*(R) +~ point L € M C P°(R) (10)

is called the Klein mapping. The point L is called the Klein image of the line L.
The polar hyperplane of a point L with respect to the hyperquadric M,

I, = {X[(X,L) =0}, (11)

intersects the hyperquadric M in the Klein images of all lines which intersect
the given line L.

Remark 3. The homogeneous coordinates of points in five-dimensional real pro-
jective space P?(R) will also be indexed as usual,

P = (po,p1,p2,P3,P4,D5) " - (12)

If such a point corresponds to the Pliicker coordinates L of a line £, then the
coordinates are identified according to po = po1, P1 = Po2, P2 = Do3; P3 = P23,
b4 = P31, P5 = P12-

2.4 Curves in line space

Any curve L(u), u € (a,b) C R, which is fully contained in the hyperquadric
M, is the Klein image of a one—parameter family of lines, i.e., of a ruled surface.
The Klein images of the generators are the points of the curve.

As an example, we consider all lines which intersect three given lines £, Lo,
L3. They form a so—called regulus, which is one of the two systems of straight
lines on a ruled quadric surface.

The Klein image of a regulus is the intersection of the three polar hyperplanes
Iy, , IIy,,, Iy, of the three points L;, Ly, L3 with the hyperquadric M. The
three polar hyperplanes intersect in a two—dimensional plane. Consequently, the
Klein image of the regulus is simply a conic on the hyperquadric M.



Fig. 2. Normal congruence of a surface.

2.5 Surfaces in line space

Now consider a (two-dimensional) surface L(u,v) which is fully contained in the
hyperquadric M. It is the Klein image of a two—parameter family of lines. Such
a system of lines is called a line congruence.

As an example we consider the normal congruence of a surface x(u,v),
(u,v) € 2 C R', which consists of all normals

x(u,v) + An(u, v), (13)

where n(u,v) is the field of the normal vectors of the given surface, see Figure 2.
The Klein image is the surface

L(u,v) = (n(u,0)", [n(u,v) x x(u,0)]" )7 (14)

Normal congruences of surfaces have been used in order to detect the shortest
distance between free—form surfaces [24]. In line space, this task can be formu-
lated as a problem of surface—surface intersection.

A line congruence is said to have the space—filling property, if any point is
contained in exactly one line, except for the points on finitely many curves. With
other words, the line congruence forms a fibration of the three—dimensional space.
In this situation, the exceptional curve(s) will be called the focal curve(s) of the
line congruence.

Such congruences can be used for defining rational mappings on algebraic
surfaces. Several examples will be discussed in the remainder of this paper.

Remark 4. 1. Space filling line congruences without exceptions (i.e., without
focal curves) are called spreads; they have been analyzed in the field of Foun-
dations of Geometry (see e.g. [18]). Line congruences and spreads are also of
recent interest in Computer Vision.

2. Using a notion from the classical theory of algebraic line geometry, space
filling line congruences are characterized by having the bundle degree 1 — the
number of lines passing through a generic point equals one.



3 Line models of quadric surfaces

Consider two skew lines F; and F2 in three—dimensional space. For any point
P, which does not belong to one of these lines, the two planes spanned by p and
either line intersect in a unique line £(p). Clearly L£(p) passes through p and
intersects both F; and F».

The two—parameter family of lines obtained in this way is called a linear
congruence of lines. It consists of all lines connecting arbitrary points on the
lines 7 and F>. Clearly, this line congruence has the space—filling property with
the two focal lines F; and F».

The Klein image of the line congruence is the intersection of the Klein quadric
M with the two polar hyperplanes IIy, and ITg,. Since the intersection of
two hyperplanes in a five—dimensional space is three-dimensional, we obtain
a quadric surface in a three—dimensional space. Depending on the choice of the
focal lines, we get the two different types of non—singular quadric surfaces: ruled
quadrics, which are projectively equivalent to the hyperboloid of revolution, and
oval quadrics, which are projectively equivalent to a sphere. As observed in [16],
this leads to an alternative approach to the so—called generalized stereographic
projection [8,9], which has been shown to be a useful tool for generating rational
curves and surfaces on oval and ruled quadric surfaces.

3.1 Ruled quadrics

We consider the two real focal lines
Fi={p|p=(0,0,\p",\peR} and
Fo={plp=(\p0,0)",\ peR}

These lines are the infinite line which is shared by all planes parallel to the

(25, 2z5)-plane, and the z,—axis, respectively. The resulting line congruence R is
shown in Figure 3 (top right). The Pliicker coordinates of the focal lines are

F, = (0,0,0,1,0,0)" and F,=(1,0,0,0,0,0)" (16)

(15)

Hence, due to the intersection condition (7), the Klein image of the congruence
satisfies the two linear equations (L,F;) = (L,F2) = 0, or, equivalently, lo; =
lo3 = 0, and Pliicker’s identity simplifies to

loals1 + lgsli2 = 0. (].7)

This is the equation of a ruled quadric surface R in the three—dimensional sub-
space of P°(R), which is given by lo; = la3 = 0.

For any point p = (po,p1,P2,P3) ', the plane spanned by p and F; (resp. F>)
intersects F (resp. F1) in the point p* = (pg,p1,0,0) " (resp. p» = (0,0,p1,p2) 7).
Consequently, the Pliicker coordinates of the line of the congruence through p
are

Lz(p) = p* AP« = (0, pop2, Pops, 0, —psp1, p1p2) " (18)
The mapping p — L (p) is equivalent to the generalized stereographic projection
onto the hyperbolic paraboloid, as introduced in [8,9].
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Fig. 3. Elliptic, hyperbolic and parabolic linear congruence.

3.2 Oval quadrics

In the complex extension of the real projective 3—space, we consider the two
conjugate—complex focal lines

Fi={p|p=pu—ipi\)",\,peC} and

e 19
‘7:2:{p|p:()‘aualﬂa_l)\)T;)\,N€C}. ( )

The resulting line congruence O is shown in Figure 3 (top left). The Pliicker
coordinates of the focal lines are

F, =(1,-4,0,—1,i,0)" and Fy = (1,4,0,—1,—i,0)". (20)

Hence, again due to the intersection condition (7), the Klein image of the con-
gruence satisfies the two linear equations (L,F; + Fo) = (L,F; — Fy) = 0,
which lead to the two conditions lg; = lo3 and lp2 = l3;. Consequently, Pliicker’s
identity simplifies to

13, + 135 + losli2 = 0. (21)

This is the equation of a oval quadric surface O in the three—dimensional sub-
space of P5(R), which is given by lo; = la3 and lp2 = I3;. In fact, by introducing
Cartesian coordinates according to

1:X:Y:Z=(—l12):l01 :loz:log, (22)



equation (21) is transformed into the elliptic paraboloid Z = X2 + Y2,
For any real point p = (po, p1,p2,p3) ", the plane spanned by p and F; (resp.
F>) intersects Fa (resp. Fi) the point

pt = (po + ips, p1 — ip2, P2 +ip1,p3 — iPo) " (23)
(resp. p+ = (po — ip3, p1 + P2, P2 — iP1,P3 +iPo) | ).

These two intersections are conjugate complex. A real point on the congruence
line through the point p can be generated by taking the linear combination

11

2(P+ - P+) = (—=ps3,p2, _plaPO)T' (24)

p
Consequently, the Pliicker coordinates of the line of the congruence through p
are

Ls(p) =pAp~t o
= (pop2+p1Ps, P2P3—PoP1, P§+P3, PoP2+D1D3, P2Ps—PoP1, —Pi—P3) |
(25)
The mapping p — L&(p) is equivalent to the generalized stereographic projection
onto the unit sphere, as introduced in [8,9].

3.3 Images of lines

Consider a line C in 3-space, which does not intersect both focal lines. All lines
of the congruence which pass through C form a regulus of lines. The Klein image
of this regulus is a conic section on the quadric. Consequently, the images of the
points of C under the generalized stereographic projections L, Lg form conics.

If the line C intersects one of the focal lines, say Fi, then the regulus de-
generates into a pencil of lines, since all its lines pass through the intersection
of the plane spanned by C and F; with the second focal line F5. In this case,
the images of the points of C under the generalized stereographic projection (18)
form a line. Clearly, only real focal lines lead to real lines on the quadric, hence
hyperbolic (resp. elliptic) linear congruences correspond to ruled (resp. oval)
quadric surfaces.

The Klein image of any line £ of the linear congruence is a point L on the
quadric surface. Those lines of the congruence, which are contained in the two
planes spanned by the line £ and either one of the two focal lines are mapped
to the two generating lines of the quadric R through that point. In the ruled
quadric case, these two lines are real, otherwise they are conjugate complex.

3.4 Cones and cylinders

The Klein images F;, Fy of the two focal lines span a line in P5(R) which
intersects the hyperquadric M in two real points (hyperbolic case) or in two
conjugate-complex points (elliptic case). The Klein image of the line congruence
is the intersection of the polar 4-—plane of this line with the hyperquadric M.



Fig. 4. Miquel’s theorem in the plane and on the sphere: The circle
through pi1,ps,q2,q4 exists if and only if the circle through
P2, P4, d1, qs exists too. Four spherical arcs can act as the bound-
aries of a biquadratic patch iff both additional circles exist.

If the line in P3(R) touches the hyperquadric M, then one obtains the Klein
image of a parabolic line congruence (see Figure 3, bottom), which is a singular
quadric (cone or cylinder). Similar to the case of oval and ruled quadrics, an
associated generalized stereographic projection can be obtained, see [6] for more
information.

3.5 Additional algebraic properties

As shown in [8], the mappings L5 and Lz have a very useful algebraic property:
any irreducible! rational parametric representation of a curve or surface can be
obtained by applying these mappings to an irreducible rational curve or surface.
Without going into detail, we mention two consequences.

Any quadratic triangular Bézier patch on an oval quadric is the image of a
linear patch. Consequently, the three boundary curves of the quadratic patch
intersect in a single point2. This point is the Klein image of the unique line of
the congruence, which is contained in the plane spanned by the linear patch.

Any biquadratic tensor—product Bézier patch on an oval quadric is the im-
age of a bilinear patch. Consequently, the four boundary curves of the quadratic
patch belong to the configuration of Miquel’s theorem, see Figure 4. The bound-
ary curves two additional circles are the images of the edges of the tetrahedron
which is spanned by the four control points of the bilinear patch. See [7, 8] for
further information and related references.

Note that the generalized stereographic projection onto the unit sphere is also
closely related to quaternion calculus and the kinematical mapping of spherical

1 A rational parametric representation of a curve or surface is said to be irreducible,
if the components of the homogeneous coordinates do not share any polynomial
factors.

% This fact had already been observed in [20].
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Fig. 5. The line congruence C.

kinematics [17]. Recently, this connection has been exploited for generating spa-
tial Pythagorean hodograph curves [4, 10].

4 Line models of cubic ruled surfaces

We generalize this line-geometric approach to another, more complicated class
of line congruences. After analyzing its Klein image, we obtain the various types
of cubic ruled surfaces by projecting it back into three-dimensional space.

4.1 The line congruence

The line congruence C has the two focal curves

Fi={plp=\0,0,)7, L, peR}
Fo={p|p=(P0,p1,p2,0) ", p} — 2pop1 + p} } (26)
={plp=("+t*(s+1)*s*=1%0)T, s,t €R }.

The second focal curve is the circle in the plane 25 = 0 with radius 1 and center
¢ = (1,0,0). The first one is the z;—axis.

Clearly, the metric properties of the focal curves are not important. As a
projectively equivalent choice one may take any non—degenerate conic section
and any line which intersects it, but which is not contained in the same plane.

Lemma 1. The line congruence C with the focal curves (26) has the space—filling
property: any point p = (po, p1,p2,p3) | (p &€ Fi U Fa) lies on exactly one line
through the two focal curves. This line has the Pliicker coordinates

Lz = (4pop? — 2p3 — 2p1p3, 4poprp2 — 2p3p2 — 23, (27)
—p3(2p% + 2p3), —4p1paps, 4pips, 0) .
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Proof. The plane spanned by p and the z;-axis intersects the circle > in the
origin of the Cartesian coordinate system (1,0,0,0) " and in the point

The Pliicker coordinates of the line are Ly = p A q(p). O

Proposition 1. The Klein image of the line congruence C is a cubic ruled sur-
face, which is contained in a four-dimensional subspace of P?(R).

Proof. The line congruence Cis projectively equivalent to the congruence gener-
ated by the two focal curves (1,0,0,s), s € R (z;—axis), and (1,¢,2,0)%, t € R
(a parabola in the plane z; = 0, which will be called the focal parabola). The
Pliicker coordinates of the lines are

L(s,t) = (t,t%, —s, —st%,st,0) ", s,t€R (29)

The area of the Newton polygon of this surface in P?(R) equals 3/2, hence it
is a cubic surface (see [14]). On the other hand, it is a ruled surface, since the
parameter lines ¢ = constant are lines. [

The Klein images of all lines which pass through a fixed point of the circle
F2 are the generators of the cubic ruled surface. In the framework of projective
differential geometry, the cubic ruled surfaces in four—dimensional space have
been studied by Weitzenbdck and Bos [25].

4.2 Projection back into three—space

The Klein image of the congruence C is a surface in a four—dimensional subspace
of P5(R). By mapping it back into three-space, we obtain a cubic ruled surface.
This mapping is described by a projective transformation

7 : L (L) = A (lot, loz, los, laz, 131) T (30)

where A is a 4 x 5 matrix. We assume that A has maximal rank. Otherwise, the
image of the surface is contained in a plane. The kernel of A is called the center
C of this mapping.

The types of cubic ruled surfaces in three—space. Recall that there are three
types of cubic ruled surfaces in three—dimensional space [17], see Figure 6. All
are equipped with a unique double line. Each generator intersects the double
line. The double line consists of singular points (in the sense of algebraic geom-
etry), and the osculating cone (the zero set of the associated Hessian matrix)
degenerates into two (possibly conjugate—complex) planes. For one or two points
along the double line, these two planes degenerate into a double plane. These
two points are called the cuspidal points of the surface. Depending on their na-
ture, one either obtains a Pliicker conoid (two real points), a Zindler conoid (two
conjugate—complex points) or Cayley’s cubic ruled surface (Cayley surface for
short, one cuspidal point).
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Fig. 6. The three types of cubic ruled surfaces. Top left: Pliicker conoid, top
right: Zindler conoid, bottom: Cayley surface (two views).

Clearly, the class of cubic ruled surfaces may degenerate in various ways (cu-
bic cones, quadric surfaces, etc.). For the sake of simplicity, we restrict ourself to
the generic case. Up to projective mappings, any cubic ruled surface is equivalent
to one of the surfaces shown in Figure 6.

Projecting space cubics into planar ones. Before proceeding to four—dimensional
space, we discuss a similar situation in three—dimensional space.

Any planar rational cubic curve can be obtained by applying a projective
transformation 7 : P3(R) — P2(R) to the space cubic c(t) = (1,¢,t2,#3)T. The
mapping 7 has a unique center, which is the kernel of the corresponding 3 x 4—
matrix. The location of the center governs the shape of the result. If the center
is located on one of the tangents of the space cubic, the image is a planar cubic
with a cusp. If the center is even on the curve itself, the image is a conic section
(conic for short). Otherwise, the planar cubic has either a double point or an
isolated singular point (in the algebraic sense).

Any line connecting two points on the curve is called a chord. A double point
is generated by a chord of the curve which passes through the center. A cusp
is generated by a tangent of the curve through the center. A isolated singular
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+— tangent surface

isolated singular point cusp double point

Fig. 7. The three types of planar rational cubics (bottom) can be obtained
by projecting a space cubic into the plane. The shape of the result
depends on the location of the center of projection with respect to the
tangent surface (top) of the cubic. The tangent surface is visualized
by level curves.

point is generated by a chord connecting two conjugate—complex points of the
curve which passes through the center.
For all centers which are on the same side of the tangent surface (see Figure

7), the type of the singularity is the same3.

Projecting 4D cubic ruled surfaces into 3D ones. In order to simplify the cal-
culations, we use again the representation (29) of the Klein image of the line
congruence which was used in the proof of Proposition 1. This line congruence
has a the focal line (1,0,0,s)" and the focal parabola (1,%,¢2,0)". Moreover,
since the Klein image of the line congruence is contained in the hyperplane
l12 = 0, we omit the last coordinate throughout the remainder of this paper, i.e.,

L(s,t) = (t,t%,—s,—st?,st) ", s,teR (31)

Consequently, we deal with a 2—surface in real projective 4—space.

Any point of a ruled surface has a 2—dimensional tangent plane. Along each
generating line, the union of the tangent planes forms a hyperplane, which will
be called the tangent hyperplane.

3 This fact has been exploited for deriving an alternative approach to earlier results
[21] on a so—called characterization diagram for planar cubics in Bernstein-Bézier
form [16].
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Lemma 2. The one—parameter family of tangent hyperplanes covers an open
subset of P*(R) twice, while the interior of the complementary subset is not
covered. The two subsets of P*(R) are separated by the hyperquadric T,

T={a=1(9,q0,9,349)" |0©e=q} (32)
Proof. The tangent hyperplanes are spanned by the four points

0

0
) &L

0
) EL ) =L

ot

L

s (33)

s=0,t=1o §=0,t=to §=0,t=to s=1,t=to

for any generating line x(s,tg), to € R, constant, s € R. A short calculation
leads to their homogeneous coordinates (0,0,¢2,1,2¢)T. Their envelope can be
shown to be the quadric 7. O

Remark 5. 1. The situation is similar for the tangents of a conic in the plane:
Points in the exterior part of the conic are covered twice, while points in the
interior part are not covered, see Figure 8.

2. The hyperquadric T is a degenerate quadric with two—dimensional generating
planes. It can be thought of as a cylinder, but with two—dimensional rulings.

[ “ “‘ .
.":':,:g:g“““““ exterior part

Suuy
N \“

Fig. 8. Tangents of a conic in the plane.

As the next step, we analyze the conic sections on the Klein image of the
congruence. These conic section are the Klein images of the reguli which are
contained in the congruence.

Lemma 3. There exists a two—parameter family of conic sections on the Klein
image of the congruence. Any conic can be obtained by substituting s = t/(ct+d)
in (81), with constants c,d € R.

Consider the associated two—parameter family of 2-planes, which are spanned
by the conics. Except for the points in the hyperquadrics M and T, each point
in four—space belongs to exactly one of those 2—planes.
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Proof. Clearly, any curve L(t/(ct + d),t) is a quadratic rational curve, i.e., a
conic section. It remains to be shown that any conic can be obtained in this way.
Any hyperplane intersects the Klein image in a cubic curve. In order to obtain
a conic, this cubic has to factor into a conic section and a line. The line has to
be one of the generating lines of the Klein image.
The hyperplanes through the generator L(s,ty) (to € R constant, s € R) of
the Klein image have the homogeneous coordinates

H = (—tok1, ki, to(—ksto + ka), ks, k1) ', (34)

They form a 2—parameter family, since they depend on the three homogeneous
parameters ki, k3, ks € R.
Indeed, the intersection between hyperplane and surface leads to

L(s,t) ' H = — (to — t) (—sksto + skq + thy — skst). (35)
N AN ~ >
generator conic

The second factor can be solved for s, which leads to the parametric represen-
tations of the conics,

tky t

O = G )k ks~ d+d

(k1 #0). (36)

This gives the following representation of the conics on the Klein image of the
congruence (which are Klein images of reguli)

R(t) = L(s(t),t) = ((ct + d), (ct +d)t, =1, —t>, t)T, teR. (37)

The system of conics depends on 2 parameters ¢, d € R.

A point Q = (qo, g1, g2, 3, 44) lies in the same 2—plane as one of these conics
if and only if the rank of the 5 x 4 matrix (R(t), R(t), R(t), Q) is less than 4.
This condition leads to unique solutions for the parameters ¢ and d,

_ Qoq4 +q1G2 _ Qog3 t+ q1q4
c=—5—"" d=""FT

;- 2—(12'113

, 38
9y — 4243 qy (38)

Thus, except for the points  on the quadric surface T which is characterized by
the equation g7 = g2q3, there is always a unique conic section lying in a 2—plane
through it. O

Remark 6. 1. If gogs +q194 = 0, i.e., d = 0, then this conic is the Klein image of
the cone spanned by the focal parabola and by the point (1,0,0,1/c) on the
focal line. This equation characterizes the intersection of the hyperquadric
M with the hyperplane g5 = ¢12 = 0.

2. The Lemma can also be concluded from the fact, that a regulus is generated
by a projective mapping between a conic and a line intersecting the conic,
where the intersection point is a fixed point of the mapping. The mapping
is given by the bilinear transformation ¢ — s(t) (see (36)), which keeps the
intersection, due to s(0) = 0.
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3. The two quadric surfaces M and T intersect in the Klein image L(s,t) of
the line congruence.

Corollary 1. If the center of the projective mapping m : P*(R) — P*(R) does
not belong to the hyperquadric T, then the unique conic on the Klein image
L(s,t), which shares a 2-plane with the center, is mapped to the double line
of the cubic ruled surface. The two tangents of the conic through the center
touch the conic in two points. These points are mapped to the cuspidal points
of the cubic ruled surface. The two points are either real (Plicker conoid) or
conjugate complex (Zindler conoid). See Figure 9 for a sketch of the situation in
4—dimensional space.

Proof. The first part of the corollary is an immediate consequence of the previ-
ous Lemma. The second part results from the fact that the two tangents to the
conic are also tangents to the Klein image of the line congruence. Consequently,
the image surface under 7 has a singularity. O

NN

AN

generators

Fig. 9. Sketch of the situation in 4D.

Summing up, we have the following results.

Theorem 1. Assume that the center C = (co,c1,c2,c3,c4)" of the projective
mapping is not contained in the Klein image of the congruence, i.e., in C &
MNT. If C is contained in T, then the image of L(s,t) is a Cayley surface. If
the coordinates of C satisfy c2 — cacs > 0, then it is a Plicker conoid, otherwise
it is a Zindler conoid.

Proof. If one of the hyperplanes passes through the center C, then it contains
one tangent of the surface through C, leading to a cuspidal point. Depending
on the number of cuspidal points, we get the three different types of cubic ruled
surfaces. [
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line Ls(p) Klein image
. through p which (Pliicker . R
point p is contained in - coordinates — point 7(Lg(p))
the congruence Lz(p))
m m m m

cubic ruled
— surface 7(C) in
3D space

hyperquadric M

3D space — line space (4D) — in 5D space

Fig. 10. Constructing a rational mapping onto a cubic ruled surface

Remark 7. If the center of the projective mapping is on the Klein image itself,
then the image surface degenerates in various ways. For instance, one may obtain
various types of ruled quadric surfaces. A more detailed discussion of these cases
is beyond the scope of this article. Further results will be presented in [19].

4.3 Constructing curves and surfaces

In order to generate rational curves and surfaces on a given cubic ruled surface,
one may now construct a suitable rational mapping, as follows. The mapping can
be found by composing the mapping p — Lz(p) (see (27)), which maps each
point in three—space to the Klein image of the unique congruence line through
it, with a suitable projective mapping 7 : P3(R) — P3(R), which maps the
Klein image of the congruence into the desired cubic ruled surface. This process
is summarized in Figure 10.

Since Lg is a cubic rational mapping, the image of a curve of degree n is a
curve of degree 3n on the cubic ruled surface. Similarly, the image of a tensor—
product patch of degree (n,n) is a tensor—product patch of degree (3n,3n).

As an example, Figure 11 shows a bicubic patch on cubic ruled surface. In
addition, four points are interpolated by a cubic curve. Two different examples
(one of them with a point at infinity) are shown.

The cubic curve has been constructed by applying the rational mapping to
a line 7 in three-dimensional space. The preimages of the four given points are
four lines which belong to the congruence C. The line 7 has to intersect these
four preimage lines.

Generally, there may exist two lines which intersect all four lines. They can
be found by intersecting the ruled quadric surface through the first three lines
with the last one. This leads to two solutions, which may be conjugate—complex,
or identical. In our situation, however, one of them is the focal line of the con-
gruence, and the other line is the desired preimage of the cubic curve.

Following the ideas presented in [8,9], the rational mapping can be used to
construct rational curves and surfaces on the three types of cubic ruled surfaces.
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Fig. 11. Bicubic tensor-product patch on a cubic ruled surface. Interpolation
of four points with a cubic (2 examples).

5 Line models of Veronese surfaces

Any line intersecting a space curve in two points is said to be a chord of it. We
consider the line congruence V that consists of all chords of the twisted cubic
curve

F=F={p|lp=0t5t)", teC}. (39)

Real lines are obtained either by connecting to real points on the curve, or
by connecting two conjugate—complex ones. As already discussed in the second
paragraph of section 4.2, the system of chords has the spacefilling property:
any point in three-dimensional space (except for the points on the cubic itself)
belongs to exactly one chord. If the point is used as a center of a projective
mapping into a plane, then corresponding two points on the cubic are mapped
to the singular point of the resulting planar cubic.

As a well-known fact from advanced geometry, the system of chords is closely
related to the Veronese surface [1].

Proposition 2. The Klein image of the line congruence is a Veronese surface
V, which is contained in the hyperquadric M of five—dimensional real projective
space.

Proof. Recall that the Veronese surface in five—dimensional projective space is
given by

(1,u,v,u%,uv,v®)", ,u,v€eR (40)
The Pliicker coordinates of the chords connecting two points (1,t,#2,¢%) and
(1, s,52,8%) of the twisted cubic can be shown to be equal to

(1,u,u? —v,v?, —uv,v)", with u=s+t,v=st, (41)

where the common factor (s —t) has been factored out. The Klein image of the
chords is projectively equivalent to the Veronese surface (40). O
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The Veronese surface can be seen as the generic triangular quadratic Bézier
surface in five-dimensional space. By projecting it into three—dimensional space
it is possible to obtain any triangular quadratic Bézier surface. This fact has
been exploited in [5] in order to classify these surfaces. Similar to the discussion
of the cubic ruled surfaces, the type of the result depends on the location of the
(here one-dimensional) center of the mapping.

Proposition 3. The Pliicker coordinates of the line in % through a given point
p are

Ly(p) = ( (pi —pop2)®,  (pT —pop2)(P1 P2 — Pop3),
(pop3 + Pgp3 — 3pop1p2ps +pips), (p3 —p1ps)’, (42)
(P13 —pé)(pl P2 —Dpop3), (p1p3 —pg)(Pom —pf) )T-

Proof. This can be shown by computing the singular point of the planar cubic
obtained by projecting the space cubic into the plane, where p serves as the
center. The details are omitted. O

Similar to the ideas discussed in Section 4.3, the mapping

p — Ly(p) (43)

can be used for parameterizing the images of the Veronese surface under pro-
jective mappings into three-dimensional space (which are all types of quadratic
triangular Bézier surfaces).

6 Concluding remarks

Line congruences have been shown to be useful for the construction of rational
curves and surfaces on special algebraic surfaces. In the case of quadric sur-
faces, this leads to an additional geometrical approach (which had already been
outlined in [16]) to the generalized stereographic projection. Originally, this tech-
nique had earlier been derived mainly relying on algebraic results [8]. As shown
in this paper, similar techniques are available for cubic ruled surfaces, and for
Veronese surfaces (triangular Bézier surfaces).

As an obvious question, one may ask which line congruences provide the
space—filling property, and — related to it — an associated rational mapping. This
is related to the bundle degree (the number of lines passing through a generic
points) of these congruences. The classification of line congruences with respect
to their bundle degree has been studied mainly in the 19th century, in classical
texts on algebraic line geometry. We mention the following results:

Generally, the lines connecting two different algebraic space curves of order
m and n with s intersections (counted with multiplicities) form a congruence of
bundle degree mn — s [22]. Consequently, the construction of the line congruence
C can immediately be generalized to congruences with two focal curves, where
one of them is a straight line. For instance, the line congruence spanned by a
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space cubic and one of its chords (or tangents) has the spacefilling property,
since any plane through the chord (or tangent) intersects the cubic in exactly one
additional point. Clearly, the Klein images of the congruences generated in this
way are ruled surfaces. Other choices of m and n with 1 ¢ {m,n} do not produce
congruences with bundle degree 1, since the algebraic space cannot intersect in
sufficiently many points without becoming identical.
The bundle degree b of the chords of an irreducible algebraic space curve of
order n satisfies
[(n—1)2/4] <b< (n = 1)(n —2)/2, (44)

see [3,23]. It depends on the types of singularities of the space curve. Only cubic
curves (n = 3) give congruences with b = 1.

Note that there are other possibilities to define spacefilling line congruences
than the two possibilities described in this paper. For instance, one may take
all lines which touch a given surface and pass through a curve. These lines form
a congruence of bundle degree rn, where r is the rank of the surface (i.e., the
algebraic order of its tangent cones) and n is the order of the space curve [22].

Further research will be devoted to possible generalizations of this approach,
which may include systems of linear subspaces in spaces of dimension higher than
three. In addition, we plan to develop computational techniques for generating
rational curves and surfaces on these special algebraic surfaces, such as tech-
niques for interpolation and approximation (see [6] for the quadric case). Also,
we will analyze the relation to Miiller’s results on universal parameterizations of
special cubic surfaces, which also cover the case of ruled ones [15]. Last but not
least, we plan to complete the results on cubic ruled surfaces by analyzing the
degenerate situations.
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