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The interpolation of some positions (= point + orientation) of a mov-
ing object is examined with help of dual quaternion curves. In order
to apply the powerful methods of Computer Aided Geometric Design,
an interpolating motion whose trajectories are rational Bézier curves is
constructed. The interpolation problem is discussed from a mechanical
and a geometrical viewpoint. A representation formula for rational mo-
tions of fixed order is presented. Finally, the construction of rational
spline motions is outlined. Dual quaternions prove to be very useful in
Computer Graphics.
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Introduction

The present paper discusses the following interpolation problem: Let some positions (= points
+ orientations) of a moving object in 3—space be given. A continuous motion interpolating
these positions is to be found.

The solution of this problem is required in Computer Graphics (in order to animate objects)
as well as in Robotics (e.g., for the path planning of robot manipulators). Most of recently
used algorithms solving this interpolation problem describe the orientations of the moving
object by rotational parameters like Euler angles and interpolate these parameters, e.g. us-
ing spline functions. Then, the trajectories of the moving object are non-rational curves in
general. They have to be computed using trigonometric functions.

Because of their fast and stable algorithms, the methods of Computer Aided Geometric De-
sign (see [7]) seem to become more and more popular in Computer Graphics. In order to
interpolate rotations using normalized quaternion curves, a spherical generalization of the de
Casteljau-algorithm has been developed in [15], [11] and [12]. The orientation of the moving
object is described by a normalized quaternion corresponding to a point on the unit sphere
of 4—space, these points are interpolated by a curve generated by the spherical de Casteljau—
algorithm.

The method has proved to be powerful, but the interpolating motion possesses some dis-
advantages: The trajectories of the moving object are non-rational curves. (In fact, their
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explicit parametric representation seems to be unknown!) The interpolation of more than
two positions by one motion and the construction of higher than first order continuous spline
motions turn out to be difficult.

Another approach to the solution of the interpolation problem has been suggested by Ge and
Ravani [6]. The positions of the moving objects are represented using dual quaternion curves
without any normalization conditions. A multiplication of these curves with arbitrary dual
factors does not change the described motion. A de Casteljau-like algorithm is formulated,
but the influence of the weights of the control points (which are dual numbers!) is very com-
plex. For example, the linear interpolation of two positions using Ge and Ravani’s method is
not unique. (It can not be the unique screw motion connecting both positions because the
trajectories of screw motions (helices) are transcendental curves in general.)

In this paper, the positions of the moving object will be represented by dual quaternion
curves satisfying a quadratic normalization condition (Pliicker’s condition). These curves can
be multiplied with arbitrary real factors without influencing the described motion. They are
described by Bézier curves, therefore the trajectories of the moving object are rational Bézier
curves, too.

The use of rational motions (i.e., motions with rational trajectories) has some important
advantages:

e The methods of Computer Aided Geometric Design can be applied directly to the tra-
jectories of the moving object.

e The curves and surfaces generated by a rational motion are Bézier and B—spline curves
and surfaces. Thus, the use of rational motions supports the data exchange with CAD
systems.

e Rational motions can be applied to the numerical control of milling machines. This is
advantageous for the generation of free—form surfaces described by rational Bézier and
B-spline surfaces.

e Collision tests (which are important for the path planning of robot manipulators) prove
to be equivalent to the computation of the roots of certain polynomials. (Note that
collision tests can be performed using dual quaternions [5].)

At first, the paper briefly summarizes some fundamentals of the use of dual quaternions in
spatial kinematics. The second section formulates the interpolation problem and outlines the
choice of the parametrization of the given positions. Then, three methods for the interpolation
of the orientations of the given positions are presented and compared in section 3. The next
section derives two methods for the interpolation of the whole positions and discusses the
dependence of the results on the choice of the coordinate systems. Section 5 outlines the
interpolation with rational motions of minimal order, i.e., with motions whose trajectories

are of minimal polynomial degree. The order of a rational motion has been considered in 1895
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at first [4]. This paper presents a representation formula for rational motions of fixed order.
Rational spline motions are briefly discussed in section 6. The final section summarizes the
visualization algorithm.

1. Dual quaternions in spatial kinematics

Dual quaternions are a powerful tool in spatial kinematics. This section briefly summarizes the
connection between spatial displacements and the non—commutative ring of dual quaternions.
A detailed introduction to this topic can be found e.g. in [3] or [2].
Consider two Euclidean 3-spaces E® and E’ with Cartesian coordinate systems {O, €, €,,€,}
and {6, g'w, é'y, é’z}, respectively. In order to simplify notations, their points will be described
by homogeneous coordinate vectors x = (zo x1 o z3)' from IR% These coordinates are
defined by the relation

Tog:X1:To:x3=1:2:9:2 (1)

The 0-th coordinate is the homogenizing one. (It is often called the weight of the point.)
The 3-space Eg results from E? by an Euclidean spatial displacement. This displacement will
be described with help of dual quaternions:

A Quaternion Q° = ¢° + G° consists of the scalar part ¢° = Scal Q° € IR and of the vector
part G° = Vec Q° € IR®. The set of quaternions with the componentwise addition and with
the multiplication

(@ +8% (B +B°) = (a®° —&°0B’) + (B +6°8° + 8% x B ) 2)

(where o and x denote the inner and the cross product of vectors from IR3, respectively) forms
the skew field IH. The adjunction of the dual unit ¢ with €2 = 0 yields the non-commutative
ring H[e] of dual quaternions. A dual quaternion

Q=0Q"+eQ = (¢"+q° +e(¢° +d°) (3)

consists of the real part Q° = Re @ € IH and of the dual part Q° = Du @Q € IH. The conjugate
dual quaternion of (3) is

Q=0Q"+eQ =(¢"-d°) +e(¢" - §°). (4)

The dual quaternion
209 +ev (vp € R, Vv € R?) (5)
corresponds to the tramslation with the displacement vector %\"' (vo # 0). The quaternion

D=dy+deH (D # 0) describes a rotation around the origin. The normalized direction
vector T of the axis (O,T) as well as the angle ¢ of the rotation can be found from

(do+d) =\/d2+dod (cosﬂ29+sinﬁgfz (117 = 1). (6)

[\

~~

= F
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The four components of the normalized quaternion E (i.e., E * E = 1) are called FEuler’s
parameters of the rotation.

A spatial displacement is the composition of the translation (5) with the rotation (6). It
corresponds to the dual quaternion

— Q'+ Q= (2 V) % (dy + d) = 2updy +2vpd +e(—Vod+dgv + v xd). (7
Q=0Q"+Q° = (2vg +eV)*(dy +d) = 2vpdy + 2vgd +e(—Vod +dyv + v xd). (7)
Trans(Q) Rot(Q) =¢° =¢q° =q =q

This dual quaternion satisfies Plicker’s relation
Du (Q*Q) =¢°¢ +§ g =0. (8)
On the other hand, any dual quaternion @ satisfying (8), whose real part does not vanish,
describes a spatial displacement. Its translational and (normalized) rotational parts are
~ 1
— 0 _ 0
Trans(Q) = Q+ Q" and Ro(@) = 5= Q" 9)

respectively. Proportional dual quaternions (i.e., quaternions which differ only by a real factor)

describe the same spatial displacement. The multiplication of dual quaternions satisfying (8)
corresponds to the composition of spatial displacements.

The Euclidean space B’ was assumed to result from E3 by the spatial displacement (7).
Consider a point x € Eg. Its homogeneous coordinates with respect to E* can be computed
with help of the transformation M : x € B — Mx € E3, where M denotes the real 4 x 4-matrix

(dg+dodjw [0 0 0

M = (10)

(d2 +dod)v vo U

The orthogonal 3 x 3-matrix U describes the rotational part of the spatial displacement (7):

d02 + d12 — d22 - d; 2(d1d2 - d()d3) 2(d0d2 + d1d3)
U= 2(d0d3 + d1d2) d02 + d22 — d12 — d32 2(d2d3 — dodl) (11)
2(d1ds — dpda) 2(dod1 + dods) d02 + d32 —d? —d2?

(with d = (dy dyds)7).

. - . - =3 .
The homogeneous coordinates y = (yo ¥' )| of the point x = (zo X' )T € E~ with respect

to E3 can be computed with help of dual quaternions, too:
yO:(QO*QO)xO and y = Du Vec (Q*[Qmo—l—si]*éo). (12)

A continuous series of spatial displacements is called a motion. The Euclidean spaces E?
and E3 are called the fized and the moving space of this motion, respectively. The motion is
described either by a dual quaternion curve @@ = Q(t) satisfying Pliicker’s relation or by a
matrix-valued function M = M(¢), cf. (10). The parameter ¢t € IR may be identified with the
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time. The images of a point x of the moving space B’ under the transformations M = M(t)
form the curve y(¢) = M(t) x in the fixed space. This curve is called the trajectory or the path
of the point.

Resulting from its description as a dual quaternion curve, a motion can be considered as a
curve on the quadric hypersurface (8) of the real projective 7-space. This paper focuses on
rational motions described by dual quaternions. In order to apply the powerful methods of
Computer Aided Geometric Design (see e.g. [7]), the Bernstein-Bézier—technique will be used:

Definition. Consider the polynomial
n
QW)= H(®B: teR (13)
1=0

(where the b7'(t) = (7)t*(1 — )"~ are the Bernstein polynomials) with coefficients B; € TH[e].
If this polynomial satisfies Pliickers relation (8), then the corresponding motion is called a
@-motion of degree n.

Note that the trajectories of the points of the moving space by a Q-motion of degree n are
rational Bézier curves of order 2n in general, see (12). The connection between the order of
the trajectories and the degree of the Q—motion has been thoroughly discussed in [9]. This
paper presents a construction for interpolating Q-motions:

2. The interpolation problem

Let m + 1 spatial displacements

P=2+¢e8)x(rio+1;) (8,1 € ]R?’; rio € R) (14)
—_— Y———
Trans(P;)  Rot(P;)

(cf. (7)) with parameters t; € IR, 0 =ty < t; < ... < t,, = 1 be given (i = 0,...,m). The
displacement P; is assumed to describe the position of the moving space E3 with respect to
the fixed space E® at the point of time ¢;.

If the parameters ¢; are unknown, then they can be estimated with help of the distances
and the angles between the given positions. The abbreviations dist(P;, P;y1) and J(F;, Pi11)
denote the distance between the origins of the positions P;, P;+1 and the angle of the rotation
connecting the rotational part of P; with that of P;;1, respectively. Note that dist(F;, P;11)
depends on the choice of the origin of the moving space B’ In order to avoid this dependence,
the unique screw motion connecting the positions P; and P, is considered, cf. [3, p.35]. The
length of the displacement vector of this screw motion is denoted by dist*(F;, Pj+1). This
length can be computed by projecting the vector from the origin of P; to that of P, onto
the axis of the rotation, which connects the rotational parts of the two positions.
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Some possibilities for the choice of the parametrization are (At; = t; 41 — t;):

Aty ~ dist(P;, Piyq) (chordal),
At~ dist* (P, Pit1) (*-chordal),
At; = constant (equidistant),
Nt~ JESHP, Pip) (

Aty ~ (B, Piya), (

At~ J(Pi; Piya) + dist(Py, Piga),

centripetal), (15)
angular)

The m + 1 positions (14) are to be interpolated by a Q-motion of degree n, i.e., a Q—motion

(13) satisfying

Qty)=MNPFP (i=0,...,m) (16)

is to be found. The real factors \; # 0 are arbitrary.

The interpolation scheme should fulfill the following requirements:

(i)
(i)

(iii)

The interpolating Q—motion is found by solving a system of linear equations.

The result of the interpolation scheme does not depend on the choice of the orientations
of the fixed and of the moving space. l.e., applying the interpolation scheme to the
positions P; x D resp. D x P; (which result from the original positions by a fixed rotation
D € H of the moving resp. of the fixed space) yields the Q-motion Q(t) * D resp.
D x Q(t), where Q(t) denotes the result of the interpolation of the original positions.

Furthermore, the interpolation problem will be considered from two different viewpoints:
From a mechanical viewpoint, the interpolating Q—motion describes the motion of a rigid
body, and the origin of the moving space has a special meaning, e.g. it is the centre of
gravity. In this case, the result of the interpolation method should depend on the choice
of the origin of the moving space.

From a geometrical viewpoint, the interpolating Q-motion only describes the motion
of the moving space with respect to the fixed space, and the result of the interpolation
scheme should be independent on the choice of the origins of the coordinate systems.
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Some notations used in the remaining sections are summarized in the following table:

P; = (2+¢€8;) % (rip +1;) € H[e] given positions of the moving object
—_— Y——
Trans(P;) Rot(P;)

t; € [0,1] their parameters (i =0,...,m)
Q=0 interpolating Q-motion
Qrot = Qrot(t) rotational part of Q(¢) (see Section 3)
C;eH coefficients of Qro4(t), see (17) ( =0,...,k)
L(r;fs)] = L%fs)] (t) translational part(s) of Q(t) (see Section 4)

p[(l/Q)] cR3 coefficients of Qt (1/2 )]( t), see (30) and (32)

rans

(.7 =0,... al[l/Q])

3. The interpolation of the rotational part

At first, the given orientations of the moving space will be interpolated by a rotational Q-
motion. Later, this motion is composed with appropriate translational motions.
The rotational part of the interpolating Q—motion has the form

Qrot Z bk (1 7)

the coefficients C; € TH are unknown. The motion (17) has to satisfy the interpolation
conditions
Qrot(ti) = Xi(rip+1;) (i=0,...,m) (18)
—_———
with arbitrary real factors A; # 0. Three different methods for the interpolation of the
rotational part are presented:

3.1 The affine method

This method is based on the normalization

Scal Qrot(t) =1 (19)

of the interpolating rotational Q-motion (17). (This normalization yields the Rodrigues’
parameter of the rotation, see [1, p.19].) Then the real factors A; from (18) have to satisfy

=5 (rig #0) (20)
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and the interpolation conditions (18) yield the equations

Zbk ) Vec (Cj) = Lf"i (1=0,...,m)

74,0

and Scal (C;) =1 (1=0,...,k)

(21)

They form a linear system for the unknown coefficients C; € IH. If k¥ = m holds, then a
unique solution exists.

The normalization (19) introduces in the space IH of quaternions the structure of an affine
3-space. Positions with ;9 = 0 (i.e., positions which result from the fixed space by a rotation
with angle ¢ = 7) are at infinity, they cannot be interpolated. Of course, the set of positions
at infinity depends on the choice of the orientation of the fixed space E3. Thus, the affine
interpolation method does not fulfill the requirement (ii): its result depends on the choice of
the orientation of the fixed space.

Proposition 1. The rotational parts of the m + 1 given positions (14) can be interpolated
by a unique Q—motion (17) of degree k = m satisfying the normalization condition (19). Its
coefficients result from the system (21) of linear equations. Positions with r;g =0 cannot be
interpolated. The result of the interpolation method depends on the choice of the orientation
of the fized space.

The next method uses another normalization and avoids the disadvantage of the affine method.

3.2 The elliptic method

The elliptic method uses the normalization

Qrot(ti) * Qrot (t:) = do(t:)* +d(t;) od(t;) =1 (i =0,...,m), (22)

—~
(=]
=

the points Qrot(t;) = do(t;) + d(t;) lie on the unit sphere of TH. Let R;
quaternions obtained from Rot(F;):

1
NGRET

be the normalized

RO =+ = (ao %) (i=0,.m) (23)

~

%

The signs of the factors A; have to be chosen — corresponding to the choice between point RZ(O)
and antipodal point —Rgo) on the unit sphere of IH. The following considerations assume,
that the signs of \; satisfy

(B - RD) = (BY - BD) < (RO + RO « (BY +BD) (=0,...,m=1), (24)

i.e., that the Euclidean distances in the 4-space IH between adjacent normalized quaternions

(0)

RZ(O) and Rgi)l are minimized. The sign of the first position R’ is arbitrary, the remaining



B. Jiittler / Visualization of moving objects

signs are determined by (24).
The interpolation conditions (18) yield the equations

k

0 .

S oh(t)Cj =R (i=0,...,m) (25)
j=0

They form a linear system for the unknown coefficients C; € . If £ = m holds, then a

unique solution exists:

Proposition 2. The rotational parts of the m + 1 given positions (14) can be interpolated
by a unique Q—motion (17) of degree k = m satisfying the interpolation conditions (25). The
result of the interpolation method does not depend on the choice of the orientations of the
fized space and of the moving space.

Proof. The independence of the choice of the orientations remains to be shown. Consider
a fixed rotation D € TH of the fixed space. This rotation corresponds to the transformation
R; — D x R; of the rotational parts of the given positions (R; = Rot(F;)). Let without loss
of generality D * D = 1 be assumed. The transformed Q-motion D * Qrot (t) satisfies the

normalization condition (22):

D % Quot(ti) * Qrot(t:) *D =1 (i = 0,...,m), (26)
=1

thus applying the elliptic interpolation scheme to the transformed positions D * R; yields the
Q-motion D* Qe (). Similar considerations prove the assertion in the case of a fixed rotation
of the moving space. [ |

The choice of another orientation of the fixed resp. of the moving space corresponds to a
rotation of the 4—space IH around the origin, this rotation maps the unit sphere in H to itself.
The result of the elliptic interpolation scheme is invariant with respect to these rotations.
(Note that also the normalization (24) is preserved by these rotations!)

Consider the set H of quaternions as a real projective 3—space. The rotations of the 4-space
IH around its origin form the group of all elliptic transformations of the projective 3—space IH.
Thus, the normalization (22) induces in IH the structure of an elliptic 3—space. This explains
the designation of the interpolation method.

Figure la) shows a rotational Q-motion of degree 4 interpolating 5 given positions with
equidistant parameters t;. This motion has been computed with help of the elliptic method.
In order to obtain a nonambiguous picture, the rotational motion Qrot(t) has been composed
with an appropriate translational motion. The trajectory of the origin of the moving space
has been drawn. In Figure 1b) some positions of the unit cube of the moving space are shown.
The three pairs of opposite faces of the cube are marked by squares, triangles and crosses,
respectively.

Figure 1: Interpolation of the rotational part using the elliptic method.



B. Jiittler / Visualization of moving objects

3.3 The projective method

This method dispenses with any normalization. If Qe(Z;) # 0 holds, then the interpolation
(18) is equivalent to

73,0 Vec (Qrot(ti)) — Scal (Qrot(ti)) r; = 0 resp. (27)
k

be(tz) [7"2',0 Vec (Cj) — Scal (CJ) fz] = 0 (Z = O, . ,m). (28)

j=0

The m + 1 equations (28) form a homogeneous linear system for the unknown coefficients
Cj. Let k = %m be assumed. Then at least one non—trivial solution of the system exists.
Additionally, this solution is unique up to real factors, see [8].

If Q(t;) = 0 holds, then the given position P; is inaccessible in the sense of numerical analysis.
These positions have to be excluded.

Consider again the set IH of quaternions as a real projective 3—space. The result of the
interpolation method is even invariant with respect to projective transformations, because the
interpolation conditions have been formulated in a completely invariant way. Especially, the
result of the projective interpolation method does not depend on the choice of the orientations
of the fixed and of the moving space: the elliptic transformations of an projective 3—space
form a subgroup of the projective transformations. Thus we have:

Proposition 3. The rotational parts of the m+ 1 given positions (14) can be interpolated by
a Q-motion (17) of degree k = %m satisfying the interpolation conditions (27). This motion
is unique up to real factors. The result of the interpolation method does not depend on the
choice of the orientations of the fized space and of the moving space.

As an important disadvantage, the projective method often produces “somersaults” of the
interpolating Q-motion. These somersaults occur, if the curve Qo (t) comes very near to
the origin 0 € TH. This disadvantage results from the fact, that the result of the method is
invariant with respect to the group of projective transformations of IH. This group is too
large, it is not the appropriate one for the rotational interpolation problem.

Figure 2a) shows a rotational Q-motion of degree 3 interpolating 5 given positions with
equidistant parameters ¢;. This motion has been computed with help of the projective method,
and it has been composed with an appropriate translational motion. The trajectories of the
origin and of the point (0 0 1) of the moving space have been drawn. The projective
interpolation method has produced one “somersault” of the interpolating motion. Some
positions of the unit cube of the moving space are shown in Figure 2b).

Figure 2: Interpolation of the rotational part using the projective method.

Comparing the results of the three methods, one obtains that the elliptic interpolation method
yields the best Q—motions interpolating the rotational parts of the given positions. Another

10
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obvious idea is to consider completely normalized motions Qyot(t), i-e., quaternion curves on
the unit sphere of H. But the use of rational curves on the unit sphere of IH would nearly
produce a doubling of the required polynomial degrees of the trajectories. Furthermore,
the normalization does not possess a direct geometrical meaning: the trajectories of a non-
normalized Q—motion are rational too. Therefore this paper will not use this normalization.

4. Interpolation with Q-motions

In this section we assume that the rotational parts of the given positions (14) are interpo-
lated by a rotational Q-motion Qo (t) of degree k, cf. (17). Now, this rotational motion is
composed with appropriate translational motions in order to interpolate the whole positions.
The coefficients B; € H[e] of the interpolating motion Q(¢) (cf. (13)) can be computed with
help of product formulae like

ot - OO
) = G oo (29)
it+j

4.1 The TR—method

This method composes the rotational motion Qt(t) with a single translational Q-motion
Qtrans (t) of degree I:

Q(t) = Qtrans(t) * Qrot(t)

! 30
= [2+€Zb§'(t)ﬁj] * Qrot(t)' ( )
j=0

In order to avoid poles, the scalar part of Qrans(t) is normalized to 2. The coefficients P; € R?
are unknown. The motion (30) has to interpolate the given spatial displacements (14). The
interpolation conditions (16) yield the equations

l
Zbé(tl)ﬁjzé’z (’iZO,...,m). (31)
7=0

They form a linear system for the unknown coefficients p; € IR3. If | = m holds, then a
unique solution exists:

Proposition 4. The m + 1 given positions (14) can be interpolated by a unique Q-motion
(30) of degree k + m (where | =m). In general, the result of the TR—method depends on the
choice of the origin of the moving space.

11
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Proof. The trajectory of the origin of the moving space &’ is a rational curve of degree
I = m, whereas the trajectory of an arbitrary point of the moving space is of degree 2k + [ in
general (see (10)). Thus the result of the TR—method depends on the choice of the origin of
the moving space. [ |

Figure 3a) shows a Q-motion of degree 8 interpolating 5 given positions obtained from the
TR-method (I = 4). The parameters ¢; have been chosen according to At; ~ /dist(F;, Pi+1),
the rotational parts of the given positions have been interpolated using the elliptic method
(k = 4). The trajectories of the origin and of the point (0 0 1)7 of the moving space have
been drawn. Figure 3b) shows some positions of the unit cube of the moving space.

Figure 3: Interpolation with the TR-method.

The combination of the TR-method with the elliptic scheme from the previous section is
summarized in the following

Algorithm 1.

e Given: m + 1 positions P; with parameters t;, see (14) (i =0,...,m).

1.) Normalize the rotational parts of the given positions corresponding to (23)! Choose the
signs according to (24)!

2.) Compute the m + 1 coefficients C; € TH of the rotational motion (17) by solving the
system (25) of linear equations (k = m)!

3.) Compute the m + 1 coefficients p; € IR? of the translational motion Qirans(t) (see (30))
by solving the system (31) of linear equations (I = m)!

4.) Multiply the translational and the rotational part, see (30)! The 2m + 1 coefficients
Bj € H[e] of the Q-motion (13) (n = 2m) result with help of the product formula (29).

4.2 The TRT-method

The TRT-method avoids the dependence on the choice of the origin. The rotational motion
Qrot(t) of degree k is composed with two translational Q-motions Qtrans( ) and Qg;ns(t) of
degree [; and Iy, respectively:

Q) = Qéi;ns(t) £ Quot(t) Efinsu)

32
= 2+eZbll )BY ] * Quoult) [2+eZb’2 .

J1=0 j2=0

12
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(Note that this motion is only of polynomial degree max(ly,l3) + k as €2 = 0 holds!) The
coefficients f)'j1 € R? and f)']-2 € R? are unknown. The translational part of the motion is

Qbtans (1) * Qrot(t) * Qs (1) * Qron (1) (33)
A short calculation leads to the interpolation conditions
I
(Qrot (t) * Qrot () S b2 (1) BLY + 2 b2 () Ut:)BY) = (Qrot (t:) * Qrot () §; (34)
Jji1=0 j2=0

(¢ = 0,...,m), where the orthogonal 3 x 3—matrix U = U(¢) is defined like in (11) with
Qrot(t;) = dp +d. These equations form a linear system for the /1 +I5+ 2 unknown coefficients
pgi), f)'éz) IR3. If I; + Iy = m — 1 holds, then in general a unique solution exists. (But, for
instance, if some of the given positions have the same orientation, then the matrix of the
system (34) may not have maximal rank!) The interpolating Q-motion (32) does not depend
on the choice of the origin of the moving space: a fixed translation of the moving space, i.e.,
a multiplication of (32) with a quaternion 1+ ¢& (& € IR?), yields again a Q-motion of the
form (32). Thus we have:

Result 5. Let two integers l1,lo < 0 satisfying [ +1o = m — 1 be given. In general the m+ 1
given positions (14) can be interpolated by a unique Q-motion (32) of degree max(ly,ls) + k.
The result of the TRT-method does not depend on the choice of the origin of the moving
space.

Note that the degree of the Q-motion (32) interpolating the given positions is less than that
of the Q-motion (30).

If the TRT—method is used in combination with the elliptic or with the projective method of
the previous section, then the result of the interpolation scheme fulfills the three requirements
(i), (ii) and (iii). It depends only on the relative positions of the fixed with respect to the
moving space.

Figure 4a) shows a Q-motion of degree 6 interpolating 5 given positions obtained from the
TRT-method (I; = 3,l; = 0). The parameters t; have been chosen according to At; ~
dist(P;, Piy1)+ (P, Pi+1), the rotational parts of the given positions have been interpolated
using the elliptic method (k = 4). The trajectories of the origin and of the point (00 1)" of
the moving space have been drawn. Figure 4b) shows some positions of the unit cube of the

moving space.

Figure 4: Interpolation with the TRT-method.

The TRT-method should be used, if the origin of the moving space does not have a special
meaning, for example, if the dimensions of the moved object are very large in comparison with
the distances between the given positions. Otherwise, the interpolating Q-motion should be
calculated with help of the TR—method.

13
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5. Interpolation with rational motions of minimal order

The use of dual quaternions yields a very compact description of spatial displacements: any
position can be described by 8 real numbers. In contrast with this, the matrix representation
(10) of a spatial displacement requires 13 essential numbers.

On the other hand, the polynomial degrees of the trajectories of the points from the moving
space EB by a Q-motion of degree n are equal to 2n in general. This very high degree is
disadvantageous for certain applications, e.g. for the construction of sweeping surfaces.

The maximal polynomial degree of the trajectories (which are assumed to be irreducible, i.e.,
their homogeneous coordinates do not have any common linear factors) is called the order of
a rational motion. The following theorem yields a representation formula for rational motions
of fixed order:

Theorem 6. Let w((t), wi(t) and d;(t) be polynomials of mazimal degree n — 2k,n, and k,
respectively (i = 1,2,3; 7 = 0,1,2,3), where the number k satisfies 0 < k < g Then the
matriz—valued polynomial

(do()® + di(t)? + da(t)? + d3(t)2)wj(t) | 0 0 0
_ wy(t)
M) = ws(#) wi(®) U) (35)
ws(t)

of degree n (where the orthogonal 3 x 3—matriz U(t) is defined in (11)) describes a rational
motion of order n.

Conversely, let a rational motion of order n by its matriz representation R = R(t) be given.
Then a number k satisfying 0 < k < % and 8 polynomials w(t), wi(t) and d;(t) of the above
mazimal degrees ezist, such that the matriz—valued polynomial M(t) (see (35)) differs from
R(t) by a factor £(t) € R at most, i.e., R(t) = &(t) M(t) holds.

The first part of this theorem results from straightforward calculations. The second part of
the theorem has been derived in [9]. The details of its proof are omitted here. A detailed
geometrical discussion of rational motions of order n < 4 can be found in [16] and [13].

The rational motion (35) of order n corresponds to the Q-motion

w1 dl
Q) =[2wi(di +di +d2 +dI) +e| wo |]*[do+ | do |] (36)
w3 d3
= Qtrans(t) =: Qrot (t)

of degree k + n. The TR-method for interpolation with Q-motions can be formulated for
interpolation with rational motions of minimal order: The rotational parts of the given po-
sitions can be interpolated with any one of the three methods of section 3, for example with

14
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help of the elliptic method (kK = m). The translational part is interpolated as follows. Let

w1 (t) 1
wi(t) =1 and wa(t) | = b4 B, (37)
ws(t) 7=0
ie., l
Qurans(t) = 2 (do (1) +di(1)? + do () + d3(1)°) +¢ Z v,(t) B; (38)
Qrot(t) * Qros(1) =

(In order to avoid poles, wg = 1 is chosen.) The coefficients p; € IR? are unknown. The
interpolation conditions yields the system

l
ST () By = (Qrot (t) * Qrot(:))Si (6=0,...,m). (39)
=0

of linear equations. The coefficients p; € IR? are computed by solving the system (39). If
I = m holds, then a unique solution exists. The interpolating Q—motion (36) has the degree
3m, but the interpolating motion M(t) is of order 2m only.

Figure 5a) shows a rational motion of order 4 interpolating 3 positions with equidistant
parameters. Some positions of a parabola in the moving space are drawn additionally. Figure
5b) shows the rational sweeping surface which is generated by moving this parabola x(v)
through the fixed space E3. This surface is called a surface of motion or a kinematic surface,
cf. [14].

Figure 5: Interpolation with a rational motion of order 4 (a).
A rational surface of motion (b).

It has the parametric representation y(t,v) = M(t)x(v), from which a representation as a
rational tensor—product Bézier surface can be computed. The parameter lines ¢ = const of
the surface are superposable.

6. Some remarks on spline motions

In order to construct motions interpolating a large number of given positions, rational spline
motions (i.e., piecewise rational motions with a certain order of continuity) have to be applied.
By replacing the Bernstein polynomials in definition (13) with B—spline basis functions over
an appropriate knot sequence (see [7]), the definition of a B-spline-Q—-motion is obtained.
The methods for interpolation with Q—motions presented in this paper can be directly gener-
alized to B—spline-Q-motions. Instead of equation (29), product formulae for B—spline basis
functions have to be used, see [10].

15
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Figure 6: A rational C'-spline-Q-motion

Of course, a lot of constructions for geometric spline motions (analogous to geometric spline
curves, see [7]) can be derived. As an example, Figure 6 shows a geometric C'-spline-Q—
motion interpolating 6 given positions with equidistant parameters. This motion has been

constructed with help of the following
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Algorithm 2.

e Given: m + 1 positions P; with parameters t;, see (14) (i =0,...,m).

1.) Estimate the velocities V; of the origin and the angular velocities @; of the moving
space at the given positions P; (i=0,...,m)! These velocities and angular velocities can
be computed from the translations and rotations connecting the translational and the
rotational part of the position P; with those of the neighbouring positions, respectively.

2.) Construct a rotational cubic Q-motion Qg))t(t) (¢ = 0,...,m — 1) interpolating the
rotational parts of the positions P;, P;+1 and the estimated angular velocities at these
positions, see (44)!

3.) Construct a translational cubic Q-motion Qggns(t) (¢=0,...,m—1) interpolating the
translational parts of the positions P;, P, and the estimated velocities of the origin

at these positions, see (41)!

4.) The whole motion is defined piecewise as the composition of the translational and the

rotational interpolant:

Q1) = QW (8) * QUL (1) for t € [t tis1)- (40)

The third step of this algorithm is analogous to the construction of a cubic C'-spline curve.
The i—th segment of the translational spline Q—motion is given by

J=0
; ; ir1—t; 41
where B = 3 R % = (41)
(i . it1—ti - (3 .
pé” = 8i+1 — +§ Vit1 and P:(;Z) = Si+1
(¢=0,...,m —1). The second step requires the formula

o @20 * Quilt)
Qrot (t) * C~21rot (t)

for the angular velocity of a rotational Q-motion (cf. [3, p.521]). From this equation, the

(42)

condition

d =N\ o
S Qror(t) = 5 (R x R) @ % Ry + AR, (43)

for the interpolation of the angular velocity &; at a given position with rotational part R; can

be derived directly. The real coefficient A is arbitrary.
(0)

Let again R; "’ denote the normalized quaternions obtained from the rotational parts of the

17
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given positions, cf. (23) and (24). The i—th segment of the rotational spline Q-motion is given
by

3
i t—t; i
Q) =2+ B0 ¢
=0

t
ji
where C{) — RO . o RO, % &+ RO, (44)
i tir1—t; o ]
Céz) = Rg% - % Wi41 * Rz(% and C:gz) = Rz(g—)l
(1=0,...,m—1). Note that the construction of the spline Q-motion works completely local,

i.e., the construction of the i—th segment requires only the knowledge of a finite number of
neighbouring positions which are used in order to estimate the velocities v;,V;;1 and the
angular velocities dJ;,dJ;11 at the endpoints of the spline segment.

The segments of the above spline motion are Q-motions of polynomial degree 6. Similar
to section 4, a C'-spline motion whose segments are rational motions of order 6 can be
constructed, too.

7. The visualization algorithm

The visualization of the moving object is summarized in the following

Algorithm 3.

e Given: Some positions P; of the moving object with parameters t;, see (14).

1.) Interpolate the given positions by a Q—motion or a spline-Q-motion obtained from the
Algorithms 1 or 2!

2.) Compute the trajectories of the points of the moving object, see (10) and (12)! (Of
course, it is sufficient to compute the trajectories of some “key points”, those of the

remaining points result from linear interpolation.)
3.) for (t=0; t<1; t+=At)

— The position of the moving object in 3—space is found by evaluating the trajectories
of the key points.

— Visualize the object using appropriate visibility and shading algorithms!

Conclusion

In this paper, a method for the interpolation of spatial displacements has been derived with
help of dual quaternion curves. The trajectories of the moving object under the interpolating
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motion are rational Bézier curves, thus the powerful methods of Computer Aided Geometric

Design can be applied to these curves. The dependence of the result of the interpolation

method on the choice of the coordinate system has been discussed thoroughly.

A detailed introduction to mathematical methods for the computer—aided design of rational

motions will be given in [8]. The author thinks that dual quaternion curves have proved to

be

a very useful tool in Computer Graphics.
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